Metamath Proof Explorer


Theorem oyon1cl

Description: The opposite Yoneda embedding at an object of C is a functor from C to Set, also known as the covariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017)

Ref Expression
Hypotheses oyoncl.o O=oppCatC
oyoncl.y Y=YonO
oyoncl.c φCCat
oyoncl.s S=SetCatU
oyoncl.u φUV
oyoncl.h φranHom𝑓CU
oyon1cl.b B=BaseC
oyon1cl.p φXB
Assertion oyon1cl φ1stYXCFuncS

Proof

Step Hyp Ref Expression
1 oyoncl.o O=oppCatC
2 oyoncl.y Y=YonO
3 oyoncl.c φCCat
4 oyoncl.s S=SetCatU
5 oyoncl.u φUV
6 oyoncl.h φranHom𝑓CU
7 oyon1cl.b B=BaseC
8 oyon1cl.p φXB
9 1 7 oppcbas B=BaseO
10 eqid CFuncCatS=CFuncCatS
11 10 fucbas CFuncS=BaseCFuncCatS
12 relfunc RelOFuncCFuncCatS
13 1 2 3 4 5 6 10 oyoncl φYOFuncCFuncCatS
14 1st2ndbr RelOFuncCFuncCatSYOFuncCFuncCatS1stYOFuncCFuncCatS2ndY
15 12 13 14 sylancr φ1stYOFuncCFuncCatS2ndY
16 9 11 15 funcf1 φ1stY:BCFuncS
17 16 8 ffvelcdmd φ1stYXCFuncS