Step |
Hyp |
Ref |
Expression |
1 |
|
oyoncl.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
2 |
|
oyoncl.y |
⊢ 𝑌 = ( Yon ‘ 𝑂 ) |
3 |
|
oyoncl.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
oyoncl.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
5 |
|
oyoncl.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
6 |
|
oyoncl.h |
⊢ ( 𝜑 → ran ( Homf ‘ 𝐶 ) ⊆ 𝑈 ) |
7 |
|
oyon1cl.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
8 |
|
oyon1cl.p |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
9 |
1 7
|
oppcbas |
⊢ 𝐵 = ( Base ‘ 𝑂 ) |
10 |
|
eqid |
⊢ ( 𝐶 FuncCat 𝑆 ) = ( 𝐶 FuncCat 𝑆 ) |
11 |
10
|
fucbas |
⊢ ( 𝐶 Func 𝑆 ) = ( Base ‘ ( 𝐶 FuncCat 𝑆 ) ) |
12 |
|
relfunc |
⊢ Rel ( 𝑂 Func ( 𝐶 FuncCat 𝑆 ) ) |
13 |
1 2 3 4 5 6 10
|
oyoncl |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑂 Func ( 𝐶 FuncCat 𝑆 ) ) ) |
14 |
|
1st2ndbr |
⊢ ( ( Rel ( 𝑂 Func ( 𝐶 FuncCat 𝑆 ) ) ∧ 𝑌 ∈ ( 𝑂 Func ( 𝐶 FuncCat 𝑆 ) ) ) → ( 1st ‘ 𝑌 ) ( 𝑂 Func ( 𝐶 FuncCat 𝑆 ) ) ( 2nd ‘ 𝑌 ) ) |
15 |
12 13 14
|
sylancr |
⊢ ( 𝜑 → ( 1st ‘ 𝑌 ) ( 𝑂 Func ( 𝐶 FuncCat 𝑆 ) ) ( 2nd ‘ 𝑌 ) ) |
16 |
9 11 15
|
funcf1 |
⊢ ( 𝜑 → ( 1st ‘ 𝑌 ) : 𝐵 ⟶ ( 𝐶 Func 𝑆 ) ) |
17 |
16 8
|
ffvelrnd |
⊢ ( 𝜑 → ( ( 1st ‘ 𝑌 ) ‘ 𝑋 ) ∈ ( 𝐶 Func 𝑆 ) ) |