Metamath Proof Explorer


Theorem oyon1cl

Description: The opposite Yoneda embedding at an object of C is a functor from C to Set, also known as the covariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017)

Ref Expression
Hypotheses oyoncl.o 𝑂 = ( oppCat ‘ 𝐶 )
oyoncl.y 𝑌 = ( Yon ‘ 𝑂 )
oyoncl.c ( 𝜑𝐶 ∈ Cat )
oyoncl.s 𝑆 = ( SetCat ‘ 𝑈 )
oyoncl.u ( 𝜑𝑈𝑉 )
oyoncl.h ( 𝜑 → ran ( Homf𝐶 ) ⊆ 𝑈 )
oyon1cl.b 𝐵 = ( Base ‘ 𝐶 )
oyon1cl.p ( 𝜑𝑋𝐵 )
Assertion oyon1cl ( 𝜑 → ( ( 1st𝑌 ) ‘ 𝑋 ) ∈ ( 𝐶 Func 𝑆 ) )

Proof

Step Hyp Ref Expression
1 oyoncl.o 𝑂 = ( oppCat ‘ 𝐶 )
2 oyoncl.y 𝑌 = ( Yon ‘ 𝑂 )
3 oyoncl.c ( 𝜑𝐶 ∈ Cat )
4 oyoncl.s 𝑆 = ( SetCat ‘ 𝑈 )
5 oyoncl.u ( 𝜑𝑈𝑉 )
6 oyoncl.h ( 𝜑 → ran ( Homf𝐶 ) ⊆ 𝑈 )
7 oyon1cl.b 𝐵 = ( Base ‘ 𝐶 )
8 oyon1cl.p ( 𝜑𝑋𝐵 )
9 1 7 oppcbas 𝐵 = ( Base ‘ 𝑂 )
10 eqid ( 𝐶 FuncCat 𝑆 ) = ( 𝐶 FuncCat 𝑆 )
11 10 fucbas ( 𝐶 Func 𝑆 ) = ( Base ‘ ( 𝐶 FuncCat 𝑆 ) )
12 relfunc Rel ( 𝑂 Func ( 𝐶 FuncCat 𝑆 ) )
13 1 2 3 4 5 6 10 oyoncl ( 𝜑𝑌 ∈ ( 𝑂 Func ( 𝐶 FuncCat 𝑆 ) ) )
14 1st2ndbr ( ( Rel ( 𝑂 Func ( 𝐶 FuncCat 𝑆 ) ) ∧ 𝑌 ∈ ( 𝑂 Func ( 𝐶 FuncCat 𝑆 ) ) ) → ( 1st𝑌 ) ( 𝑂 Func ( 𝐶 FuncCat 𝑆 ) ) ( 2nd𝑌 ) )
15 12 13 14 sylancr ( 𝜑 → ( 1st𝑌 ) ( 𝑂 Func ( 𝐶 FuncCat 𝑆 ) ) ( 2nd𝑌 ) )
16 9 11 15 funcf1 ( 𝜑 → ( 1st𝑌 ) : 𝐵 ⟶ ( 𝐶 Func 𝑆 ) )
17 16 8 ffvelrnd ( 𝜑 → ( ( 1st𝑌 ) ‘ 𝑋 ) ∈ ( 𝐶 Func 𝑆 ) )