Metamath Proof Explorer


Theorem oyon1cl

Description: The opposite Yoneda embedding at an object of C is a functor from C to Set, also known as the covariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017)

Ref Expression
Hypotheses oyoncl.o
|- O = ( oppCat ` C )
oyoncl.y
|- Y = ( Yon ` O )
oyoncl.c
|- ( ph -> C e. Cat )
oyoncl.s
|- S = ( SetCat ` U )
oyoncl.u
|- ( ph -> U e. V )
oyoncl.h
|- ( ph -> ran ( Homf ` C ) C_ U )
oyon1cl.b
|- B = ( Base ` C )
oyon1cl.p
|- ( ph -> X e. B )
Assertion oyon1cl
|- ( ph -> ( ( 1st ` Y ) ` X ) e. ( C Func S ) )

Proof

Step Hyp Ref Expression
1 oyoncl.o
 |-  O = ( oppCat ` C )
2 oyoncl.y
 |-  Y = ( Yon ` O )
3 oyoncl.c
 |-  ( ph -> C e. Cat )
4 oyoncl.s
 |-  S = ( SetCat ` U )
5 oyoncl.u
 |-  ( ph -> U e. V )
6 oyoncl.h
 |-  ( ph -> ran ( Homf ` C ) C_ U )
7 oyon1cl.b
 |-  B = ( Base ` C )
8 oyon1cl.p
 |-  ( ph -> X e. B )
9 1 7 oppcbas
 |-  B = ( Base ` O )
10 eqid
 |-  ( C FuncCat S ) = ( C FuncCat S )
11 10 fucbas
 |-  ( C Func S ) = ( Base ` ( C FuncCat S ) )
12 relfunc
 |-  Rel ( O Func ( C FuncCat S ) )
13 1 2 3 4 5 6 10 oyoncl
 |-  ( ph -> Y e. ( O Func ( C FuncCat S ) ) )
14 1st2ndbr
 |-  ( ( Rel ( O Func ( C FuncCat S ) ) /\ Y e. ( O Func ( C FuncCat S ) ) ) -> ( 1st ` Y ) ( O Func ( C FuncCat S ) ) ( 2nd ` Y ) )
15 12 13 14 sylancr
 |-  ( ph -> ( 1st ` Y ) ( O Func ( C FuncCat S ) ) ( 2nd ` Y ) )
16 9 11 15 funcf1
 |-  ( ph -> ( 1st ` Y ) : B --> ( C Func S ) )
17 16 8 ffvelrnd
 |-  ( ph -> ( ( 1st ` Y ) ` X ) e. ( C Func S ) )