Step |
Hyp |
Ref |
Expression |
1 |
|
oyoncl.o |
|- O = ( oppCat ` C ) |
2 |
|
oyoncl.y |
|- Y = ( Yon ` O ) |
3 |
|
oyoncl.c |
|- ( ph -> C e. Cat ) |
4 |
|
oyoncl.s |
|- S = ( SetCat ` U ) |
5 |
|
oyoncl.u |
|- ( ph -> U e. V ) |
6 |
|
oyoncl.h |
|- ( ph -> ran ( Homf ` C ) C_ U ) |
7 |
|
oyon1cl.b |
|- B = ( Base ` C ) |
8 |
|
oyon1cl.p |
|- ( ph -> X e. B ) |
9 |
1 7
|
oppcbas |
|- B = ( Base ` O ) |
10 |
|
eqid |
|- ( C FuncCat S ) = ( C FuncCat S ) |
11 |
10
|
fucbas |
|- ( C Func S ) = ( Base ` ( C FuncCat S ) ) |
12 |
|
relfunc |
|- Rel ( O Func ( C FuncCat S ) ) |
13 |
1 2 3 4 5 6 10
|
oyoncl |
|- ( ph -> Y e. ( O Func ( C FuncCat S ) ) ) |
14 |
|
1st2ndbr |
|- ( ( Rel ( O Func ( C FuncCat S ) ) /\ Y e. ( O Func ( C FuncCat S ) ) ) -> ( 1st ` Y ) ( O Func ( C FuncCat S ) ) ( 2nd ` Y ) ) |
15 |
12 13 14
|
sylancr |
|- ( ph -> ( 1st ` Y ) ( O Func ( C FuncCat S ) ) ( 2nd ` Y ) ) |
16 |
9 11 15
|
funcf1 |
|- ( ph -> ( 1st ` Y ) : B --> ( C Func S ) ) |
17 |
16 8
|
ffvelrnd |
|- ( ph -> ( ( 1st ` Y ) ` X ) e. ( C Func S ) ) |