| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oyoncl.o |
|- O = ( oppCat ` C ) |
| 2 |
|
oyoncl.y |
|- Y = ( Yon ` O ) |
| 3 |
|
oyoncl.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
oyoncl.s |
|- S = ( SetCat ` U ) |
| 5 |
|
oyoncl.u |
|- ( ph -> U e. V ) |
| 6 |
|
oyoncl.h |
|- ( ph -> ran ( Homf ` C ) C_ U ) |
| 7 |
|
oyon1cl.b |
|- B = ( Base ` C ) |
| 8 |
|
oyon1cl.p |
|- ( ph -> X e. B ) |
| 9 |
1 7
|
oppcbas |
|- B = ( Base ` O ) |
| 10 |
|
eqid |
|- ( C FuncCat S ) = ( C FuncCat S ) |
| 11 |
10
|
fucbas |
|- ( C Func S ) = ( Base ` ( C FuncCat S ) ) |
| 12 |
|
relfunc |
|- Rel ( O Func ( C FuncCat S ) ) |
| 13 |
1 2 3 4 5 6 10
|
oyoncl |
|- ( ph -> Y e. ( O Func ( C FuncCat S ) ) ) |
| 14 |
|
1st2ndbr |
|- ( ( Rel ( O Func ( C FuncCat S ) ) /\ Y e. ( O Func ( C FuncCat S ) ) ) -> ( 1st ` Y ) ( O Func ( C FuncCat S ) ) ( 2nd ` Y ) ) |
| 15 |
12 13 14
|
sylancr |
|- ( ph -> ( 1st ` Y ) ( O Func ( C FuncCat S ) ) ( 2nd ` Y ) ) |
| 16 |
9 11 15
|
funcf1 |
|- ( ph -> ( 1st ` Y ) : B --> ( C Func S ) ) |
| 17 |
16 8
|
ffvelcdmd |
|- ( ph -> ( ( 1st ` Y ) ` X ) e. ( C Func S ) ) |