Step |
Hyp |
Ref |
Expression |
1 |
|
hofpropd.1 |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
2 |
|
hofpropd.2 |
⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
3 |
|
hofpropd.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
hofpropd.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
5 |
1
|
oppchomfpropd |
⊢ ( 𝜑 → ( Homf ‘ ( oppCat ‘ 𝐶 ) ) = ( Homf ‘ ( oppCat ‘ 𝐷 ) ) ) |
6 |
1 2
|
oppccomfpropd |
⊢ ( 𝜑 → ( compf ‘ ( oppCat ‘ 𝐶 ) ) = ( compf ‘ ( oppCat ‘ 𝐷 ) ) ) |
7 |
|
eqid |
⊢ ( oppCat ‘ 𝐶 ) = ( oppCat ‘ 𝐶 ) |
8 |
7
|
oppccat |
⊢ ( 𝐶 ∈ Cat → ( oppCat ‘ 𝐶 ) ∈ Cat ) |
9 |
3 8
|
syl |
⊢ ( 𝜑 → ( oppCat ‘ 𝐶 ) ∈ Cat ) |
10 |
|
eqid |
⊢ ( oppCat ‘ 𝐷 ) = ( oppCat ‘ 𝐷 ) |
11 |
10
|
oppccat |
⊢ ( 𝐷 ∈ Cat → ( oppCat ‘ 𝐷 ) ∈ Cat ) |
12 |
4 11
|
syl |
⊢ ( 𝜑 → ( oppCat ‘ 𝐷 ) ∈ Cat ) |
13 |
|
eqid |
⊢ ( HomF ‘ ( oppCat ‘ 𝐶 ) ) = ( HomF ‘ ( oppCat ‘ 𝐶 ) ) |
14 |
|
eqid |
⊢ ( SetCat ‘ ran ( Homf ‘ 𝐶 ) ) = ( SetCat ‘ ran ( Homf ‘ 𝐶 ) ) |
15 |
|
fvex |
⊢ ( Homf ‘ 𝐶 ) ∈ V |
16 |
15
|
rnex |
⊢ ran ( Homf ‘ 𝐶 ) ∈ V |
17 |
16
|
a1i |
⊢ ( 𝜑 → ran ( Homf ‘ 𝐶 ) ∈ V ) |
18 |
|
ssidd |
⊢ ( 𝜑 → ran ( Homf ‘ 𝐶 ) ⊆ ran ( Homf ‘ 𝐶 ) ) |
19 |
7 13 14 3 17 18
|
oppchofcl |
⊢ ( 𝜑 → ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ∈ ( ( 𝐶 ×c ( oppCat ‘ 𝐶 ) ) Func ( SetCat ‘ ran ( Homf ‘ 𝐶 ) ) ) ) |
20 |
1 2 5 6 3 4 9 12 19
|
curfpropd |
⊢ ( 𝜑 → ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) = ( 〈 𝐷 , ( oppCat ‘ 𝐷 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) ) |
21 |
5 6 9 12
|
hofpropd |
⊢ ( 𝜑 → ( HomF ‘ ( oppCat ‘ 𝐶 ) ) = ( HomF ‘ ( oppCat ‘ 𝐷 ) ) ) |
22 |
21
|
oveq2d |
⊢ ( 𝜑 → ( 〈 𝐷 , ( oppCat ‘ 𝐷 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) = ( 〈 𝐷 , ( oppCat ‘ 𝐷 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐷 ) ) ) ) |
23 |
20 22
|
eqtrd |
⊢ ( 𝜑 → ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) = ( 〈 𝐷 , ( oppCat ‘ 𝐷 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐷 ) ) ) ) |
24 |
|
eqid |
⊢ ( Yon ‘ 𝐶 ) = ( Yon ‘ 𝐶 ) |
25 |
24 3 7 13
|
yonval |
⊢ ( 𝜑 → ( Yon ‘ 𝐶 ) = ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) ) |
26 |
|
eqid |
⊢ ( Yon ‘ 𝐷 ) = ( Yon ‘ 𝐷 ) |
27 |
|
eqid |
⊢ ( HomF ‘ ( oppCat ‘ 𝐷 ) ) = ( HomF ‘ ( oppCat ‘ 𝐷 ) ) |
28 |
26 4 10 27
|
yonval |
⊢ ( 𝜑 → ( Yon ‘ 𝐷 ) = ( 〈 𝐷 , ( oppCat ‘ 𝐷 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐷 ) ) ) ) |
29 |
23 25 28
|
3eqtr4d |
⊢ ( 𝜑 → ( Yon ‘ 𝐶 ) = ( Yon ‘ 𝐷 ) ) |