Step |
Hyp |
Ref |
Expression |
1 |
|
yon11.y |
⊢ 𝑌 = ( Yon ‘ 𝐶 ) |
2 |
|
yon11.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
yon11.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
yon11.p |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
yon11.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
6 |
|
yon11.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
7 |
|
yon12.x |
⊢ · = ( comp ‘ 𝐶 ) |
8 |
|
yon12.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝐵 ) |
9 |
|
yon2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑍 ) ) |
10 |
|
yon2.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑊 𝐻 𝑋 ) ) |
11 |
|
eqid |
⊢ ( oppCat ‘ 𝐶 ) = ( oppCat ‘ 𝐶 ) |
12 |
|
eqid |
⊢ ( HomF ‘ ( oppCat ‘ 𝐶 ) ) = ( HomF ‘ ( oppCat ‘ 𝐶 ) ) |
13 |
1 3 11 12
|
yonval |
⊢ ( 𝜑 → 𝑌 = ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝜑 → ( 2nd ‘ 𝑌 ) = ( 2nd ‘ ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) ) ) |
15 |
14
|
oveqd |
⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ 𝑌 ) 𝑍 ) = ( 𝑋 ( 2nd ‘ ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) ) 𝑍 ) ) |
16 |
15
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 𝑌 ) 𝑍 ) ‘ 𝐹 ) = ( ( 𝑋 ( 2nd ‘ ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) ) 𝑍 ) ‘ 𝐹 ) ) |
17 |
16
|
fveq1d |
⊢ ( 𝜑 → ( ( ( 𝑋 ( 2nd ‘ 𝑌 ) 𝑍 ) ‘ 𝐹 ) ‘ 𝑊 ) = ( ( ( 𝑋 ( 2nd ‘ ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) ) 𝑍 ) ‘ 𝐹 ) ‘ 𝑊 ) ) |
18 |
|
eqid |
⊢ ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) = ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) |
19 |
11
|
oppccat |
⊢ ( 𝐶 ∈ Cat → ( oppCat ‘ 𝐶 ) ∈ Cat ) |
20 |
3 19
|
syl |
⊢ ( 𝜑 → ( oppCat ‘ 𝐶 ) ∈ Cat ) |
21 |
|
eqid |
⊢ ( SetCat ‘ ran ( Homf ‘ 𝐶 ) ) = ( SetCat ‘ ran ( Homf ‘ 𝐶 ) ) |
22 |
|
fvex |
⊢ ( Homf ‘ 𝐶 ) ∈ V |
23 |
22
|
rnex |
⊢ ran ( Homf ‘ 𝐶 ) ∈ V |
24 |
23
|
a1i |
⊢ ( 𝜑 → ran ( Homf ‘ 𝐶 ) ∈ V ) |
25 |
|
ssidd |
⊢ ( 𝜑 → ran ( Homf ‘ 𝐶 ) ⊆ ran ( Homf ‘ 𝐶 ) ) |
26 |
11 12 21 3 24 25
|
oppchofcl |
⊢ ( 𝜑 → ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ∈ ( ( 𝐶 ×c ( oppCat ‘ 𝐶 ) ) Func ( SetCat ‘ ran ( Homf ‘ 𝐶 ) ) ) ) |
27 |
11 2
|
oppcbas |
⊢ 𝐵 = ( Base ‘ ( oppCat ‘ 𝐶 ) ) |
28 |
|
eqid |
⊢ ( Id ‘ ( oppCat ‘ 𝐶 ) ) = ( Id ‘ ( oppCat ‘ 𝐶 ) ) |
29 |
|
eqid |
⊢ ( ( 𝑋 ( 2nd ‘ ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) ) 𝑍 ) ‘ 𝐹 ) = ( ( 𝑋 ( 2nd ‘ ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) ) 𝑍 ) ‘ 𝐹 ) |
30 |
18 2 3 20 26 27 5 28 4 6 9 29 8
|
curf2val |
⊢ ( 𝜑 → ( ( ( 𝑋 ( 2nd ‘ ( 〈 𝐶 , ( oppCat ‘ 𝐶 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) ) 𝑍 ) ‘ 𝐹 ) ‘ 𝑊 ) = ( 𝐹 ( 〈 𝑋 , 𝑊 〉 ( 2nd ‘ ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) 〈 𝑍 , 𝑊 〉 ) ( ( Id ‘ ( oppCat ‘ 𝐶 ) ) ‘ 𝑊 ) ) ) |
31 |
17 30
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑋 ( 2nd ‘ 𝑌 ) 𝑍 ) ‘ 𝐹 ) ‘ 𝑊 ) = ( 𝐹 ( 〈 𝑋 , 𝑊 〉 ( 2nd ‘ ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) 〈 𝑍 , 𝑊 〉 ) ( ( Id ‘ ( oppCat ‘ 𝐶 ) ) ‘ 𝑊 ) ) ) |
32 |
31
|
fveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝑋 ( 2nd ‘ 𝑌 ) 𝑍 ) ‘ 𝐹 ) ‘ 𝑊 ) ‘ 𝐺 ) = ( ( 𝐹 ( 〈 𝑋 , 𝑊 〉 ( 2nd ‘ ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) 〈 𝑍 , 𝑊 〉 ) ( ( Id ‘ ( oppCat ‘ 𝐶 ) ) ‘ 𝑊 ) ) ‘ 𝐺 ) ) |
33 |
|
eqid |
⊢ ( Hom ‘ ( oppCat ‘ 𝐶 ) ) = ( Hom ‘ ( oppCat ‘ 𝐶 ) ) |
34 |
|
eqid |
⊢ ( comp ‘ ( oppCat ‘ 𝐶 ) ) = ( comp ‘ ( oppCat ‘ 𝐶 ) ) |
35 |
5 11
|
oppchom |
⊢ ( 𝑍 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) = ( 𝑋 𝐻 𝑍 ) |
36 |
9 35
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑍 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) ) |
37 |
27 33 28 20 8
|
catidcl |
⊢ ( 𝜑 → ( ( Id ‘ ( oppCat ‘ 𝐶 ) ) ‘ 𝑊 ) ∈ ( 𝑊 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑊 ) ) |
38 |
5 11
|
oppchom |
⊢ ( 𝑋 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑊 ) = ( 𝑊 𝐻 𝑋 ) |
39 |
10 38
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑊 ) ) |
40 |
12 20 27 33 4 8 6 8 34 36 37 39
|
hof2 |
⊢ ( 𝜑 → ( ( 𝐹 ( 〈 𝑋 , 𝑊 〉 ( 2nd ‘ ( HomF ‘ ( oppCat ‘ 𝐶 ) ) ) 〈 𝑍 , 𝑊 〉 ) ( ( Id ‘ ( oppCat ‘ 𝐶 ) ) ‘ 𝑊 ) ) ‘ 𝐺 ) = ( ( ( ( Id ‘ ( oppCat ‘ 𝐶 ) ) ‘ 𝑊 ) ( 〈 𝑋 , 𝑊 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑊 ) 𝐺 ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑊 ) 𝐹 ) ) |
41 |
27 33 28 20 4 34 8 39
|
catlid |
⊢ ( 𝜑 → ( ( ( Id ‘ ( oppCat ‘ 𝐶 ) ) ‘ 𝑊 ) ( 〈 𝑋 , 𝑊 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑊 ) 𝐺 ) = 𝐺 ) |
42 |
41
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( Id ‘ ( oppCat ‘ 𝐶 ) ) ‘ 𝑊 ) ( 〈 𝑋 , 𝑊 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑊 ) 𝐺 ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑊 ) 𝐹 ) = ( 𝐺 ( 〈 𝑍 , 𝑋 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑊 ) 𝐹 ) ) |
43 |
2 7 11 6 4 8
|
oppcco |
⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑍 , 𝑋 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑊 ) 𝐹 ) = ( 𝐹 ( 〈 𝑊 , 𝑋 〉 · 𝑍 ) 𝐺 ) ) |
44 |
42 43
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( Id ‘ ( oppCat ‘ 𝐶 ) ) ‘ 𝑊 ) ( 〈 𝑋 , 𝑊 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑊 ) 𝐺 ) ( 〈 𝑍 , 𝑋 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑊 ) 𝐹 ) = ( 𝐹 ( 〈 𝑊 , 𝑋 〉 · 𝑍 ) 𝐺 ) ) |
45 |
32 40 44
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ( 𝑋 ( 2nd ‘ 𝑌 ) 𝑍 ) ‘ 𝐹 ) ‘ 𝑊 ) ‘ 𝐺 ) = ( 𝐹 ( 〈 𝑊 , 𝑋 〉 · 𝑍 ) 𝐺 ) ) |