Step |
Hyp |
Ref |
Expression |
1 |
|
curf2.g |
⊢ 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF 𝐹 ) |
2 |
|
curf2.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
3 |
|
curf2.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
curf2.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
5 |
|
curf2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
6 |
|
curf2.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
7 |
|
curf2.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
8 |
|
curf2.i |
⊢ 𝐼 = ( Id ‘ 𝐷 ) |
9 |
|
curf2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
10 |
|
curf2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) |
11 |
|
curf2.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) |
12 |
|
curf2.l |
⊢ 𝐿 = ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑌 ) ‘ 𝐾 ) |
13 |
|
curf2.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
14 |
1 2 3 4 5 6 7 8 9 10 11 12
|
curf2 |
⊢ ( 𝜑 → 𝐿 = ( 𝑧 ∈ 𝐵 ↦ ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → 𝑧 = 𝑍 ) |
16 |
15
|
opeq2d |
⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → 〈 𝑋 , 𝑧 〉 = 〈 𝑋 , 𝑍 〉 ) |
17 |
15
|
opeq2d |
⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → 〈 𝑌 , 𝑧 〉 = 〈 𝑌 , 𝑍 〉 ) |
18 |
16 17
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) = ( 〈 𝑋 , 𝑍 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑍 〉 ) ) |
19 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → 𝐾 = 𝐾 ) |
20 |
15
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → ( 𝐼 ‘ 𝑧 ) = ( 𝐼 ‘ 𝑍 ) ) |
21 |
18 19 20
|
oveq123d |
⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑍 〉 ) ( 𝐼 ‘ 𝑍 ) ) ) |
22 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐾 ( 〈 𝑋 , 𝑍 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑍 〉 ) ( 𝐼 ‘ 𝑍 ) ) ∈ V ) |
23 |
14 21 13 22
|
fvmptd |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝑍 ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑍 〉 ) ( 𝐼 ‘ 𝑍 ) ) ) |