Step |
Hyp |
Ref |
Expression |
1 |
|
curf2.g |
⊢ 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF 𝐹 ) |
2 |
|
curf2.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
3 |
|
curf2.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
curf2.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
5 |
|
curf2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
6 |
|
curf2.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
7 |
|
curf2.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
8 |
|
curf2.i |
⊢ 𝐼 = ( Id ‘ 𝐷 ) |
9 |
|
curf2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
10 |
|
curf2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) |
11 |
|
curf2.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) |
12 |
|
curf2.l |
⊢ 𝐿 = ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑌 ) ‘ 𝐾 ) |
13 |
|
curf2.n |
⊢ 𝑁 = ( 𝐷 Nat 𝐸 ) |
14 |
1 2 3 4 5 6 7 8 9 10 11 12
|
curf2 |
⊢ ( 𝜑 → 𝐿 = ( 𝑧 ∈ 𝐵 ↦ ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) |
15 |
|
eqid |
⊢ ( 𝐶 ×c 𝐷 ) = ( 𝐶 ×c 𝐷 ) |
16 |
15 2 6
|
xpcbas |
⊢ ( 𝐴 × 𝐵 ) = ( Base ‘ ( 𝐶 ×c 𝐷 ) ) |
17 |
|
eqid |
⊢ ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) = ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) |
18 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
19 |
|
relfunc |
⊢ Rel ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) |
20 |
|
1st2ndbr |
⊢ ( ( Rel ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ∧ 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
21 |
19 5 20
|
sylancr |
⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
23 |
|
opelxpi |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 〈 𝑋 , 𝑧 〉 ∈ ( 𝐴 × 𝐵 ) ) |
24 |
9 23
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 〈 𝑋 , 𝑧 〉 ∈ ( 𝐴 × 𝐵 ) ) |
25 |
|
opelxpi |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → 〈 𝑌 , 𝑧 〉 ∈ ( 𝐴 × 𝐵 ) ) |
26 |
10 25
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 〈 𝑌 , 𝑧 〉 ∈ ( 𝐴 × 𝐵 ) ) |
27 |
16 17 18 22 24 26
|
funcf2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) : ( 〈 𝑋 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑧 〉 ) ⟶ ( ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) ) ) |
28 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
29 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝑋 ∈ 𝐴 ) |
30 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) |
31 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝑌 ∈ 𝐴 ) |
32 |
15 2 6 7 28 29 30 31 30 17
|
xpchom2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 〈 𝑋 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑧 〉 ) = ( ( 𝑋 𝐻 𝑌 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) |
33 |
32
|
feq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) : ( 〈 𝑋 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑧 〉 ) ⟶ ( ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) ) ↔ ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) : ( ( 𝑋 𝐻 𝑌 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑧 ) ) ⟶ ( ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) ) ) ) |
34 |
27 33
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) : ( ( 𝑋 𝐻 𝑌 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑧 ) ) ⟶ ( ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) ) ) |
35 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) |
36 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝐷 ∈ Cat ) |
37 |
6 28 8 36 30
|
catidcl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑧 ) ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑧 ) ) |
38 |
34 35 37
|
fovrnd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ∈ ( ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) ) ) |
39 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝐶 ∈ Cat ) |
40 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
41 |
|
eqid |
⊢ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) = ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) |
42 |
1 2 39 36 40 6 29 41 30
|
curf11 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) = ( 𝑋 ( 1st ‘ 𝐹 ) 𝑧 ) ) |
43 |
|
df-ov |
⊢ ( 𝑋 ( 1st ‘ 𝐹 ) 𝑧 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) |
44 |
42 43
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) ) |
45 |
|
eqid |
⊢ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) = ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) |
46 |
1 2 39 36 40 6 31 45 30
|
curf11 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) = ( 𝑌 ( 1st ‘ 𝐹 ) 𝑧 ) ) |
47 |
|
df-ov |
⊢ ( 𝑌 ( 1st ‘ 𝐹 ) 𝑧 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) |
48 |
46 47
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) ) |
49 |
44 48
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) = ( ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) ) ) |
50 |
38 49
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ∈ ( ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) ) |
51 |
50
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ∈ ( ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) ) |
52 |
6
|
fvexi |
⊢ 𝐵 ∈ V |
53 |
|
mptelixpg |
⊢ ( 𝐵 ∈ V → ( ( 𝑧 ∈ 𝐵 ↦ ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ∈ X 𝑧 ∈ 𝐵 ( ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ∈ ( ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) ) ) |
54 |
52 53
|
ax-mp |
⊢ ( ( 𝑧 ∈ 𝐵 ↦ ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ∈ X 𝑧 ∈ 𝐵 ( ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ∈ ( ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) ) |
55 |
51 54
|
sylibr |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐵 ↦ ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ∈ X 𝑧 ∈ 𝐵 ( ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) ) |
56 |
14 55
|
eqeltrd |
⊢ ( 𝜑 → 𝐿 ∈ X 𝑧 ∈ 𝐵 ( ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) ) |
57 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
58 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝐶 ∈ Cat ) |
59 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑋 ∈ 𝐴 ) |
60 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
61 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑌 ∈ 𝐴 ) |
62 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) |
63 |
2 7 57 58 59 60 61 62
|
catrid |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝐾 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) = 𝐾 ) |
64 |
2 7 57 58 59 60 61 62
|
catlid |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐾 ) = 𝐾 ) |
65 |
63 64
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝐾 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐾 ) ) |
66 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝐷 ∈ Cat ) |
67 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑧 ∈ 𝐵 ) |
68 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
69 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑤 ∈ 𝐵 ) |
70 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) |
71 |
6 28 8 66 67 68 69 70
|
catlid |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝐼 ‘ 𝑤 ) ( 〈 𝑧 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = 𝑓 ) |
72 |
6 28 8 66 67 68 69 70
|
catrid |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝑓 ( 〈 𝑧 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝐼 ‘ 𝑧 ) ) = 𝑓 ) |
73 |
71 72
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝐼 ‘ 𝑤 ) ( 〈 𝑧 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( 𝑓 ( 〈 𝑧 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝐼 ‘ 𝑧 ) ) ) |
74 |
65 73
|
opeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 ( 𝐾 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) , ( ( 𝐼 ‘ 𝑤 ) ( 〈 𝑧 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) 〉 = 〈 ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐾 ) , ( 𝑓 ( 〈 𝑧 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝐼 ‘ 𝑧 ) ) 〉 ) |
75 |
|
eqid |
⊢ ( comp ‘ ( 𝐶 ×c 𝐷 ) ) = ( comp ‘ ( 𝐶 ×c 𝐷 ) ) |
76 |
2 7 57 58 59
|
catidcl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ ( 𝑋 𝐻 𝑋 ) ) |
77 |
6 28 8 66 69
|
catidcl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝐼 ‘ 𝑤 ) ∈ ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) |
78 |
15 2 6 7 28 59 67 59 69 60 68 75 61 69 76 70 62 77
|
xpcco2 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 𝐾 , ( 𝐼 ‘ 𝑤 ) 〉 ( 〈 〈 𝑋 , 𝑧 〉 , 〈 𝑋 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑤 〉 ) 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 〉 ) = 〈 ( 𝐾 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) , ( ( 𝐼 ‘ 𝑤 ) ( 〈 𝑧 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) 〉 ) |
79 |
37
|
3ad2antr1 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝐼 ‘ 𝑧 ) ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑧 ) ) |
80 |
2 7 57 58 61
|
catidcl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ∈ ( 𝑌 𝐻 𝑌 ) ) |
81 |
15 2 6 7 28 59 67 61 67 60 68 75 61 69 62 79 80 70
|
xpcco2 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 〉 ( 〈 〈 𝑋 , 𝑧 〉 , 〈 𝑌 , 𝑧 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑤 〉 ) 〈 𝐾 , ( 𝐼 ‘ 𝑧 ) 〉 ) = 〈 ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐾 ) , ( 𝑓 ( 〈 𝑧 , 𝑧 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( 𝐼 ‘ 𝑧 ) ) 〉 ) |
82 |
74 78 81
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 𝐾 , ( 𝐼 ‘ 𝑤 ) 〉 ( 〈 〈 𝑋 , 𝑧 〉 , 〈 𝑋 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑤 〉 ) 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 〉 ) = ( 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 〉 ( 〈 〈 𝑋 , 𝑧 〉 , 〈 𝑌 , 𝑧 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑤 〉 ) 〈 𝐾 , ( 𝐼 ‘ 𝑧 ) 〉 ) ) |
83 |
82
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ ( 〈 𝐾 , ( 𝐼 ‘ 𝑤 ) 〉 ( 〈 〈 𝑋 , 𝑧 〉 , 〈 𝑋 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑤 〉 ) 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 〉 ) ) = ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ ( 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 〉 ( 〈 〈 𝑋 , 𝑧 〉 , 〈 𝑌 , 𝑧 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑤 〉 ) 〈 𝐾 , ( 𝐼 ‘ 𝑧 ) 〉 ) ) ) |
84 |
|
eqid |
⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) |
85 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
86 |
24
|
3ad2antr1 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝑋 , 𝑧 〉 ∈ ( 𝐴 × 𝐵 ) ) |
87 |
59 69
|
opelxpd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝑋 , 𝑤 〉 ∈ ( 𝐴 × 𝐵 ) ) |
88 |
61 69
|
opelxpd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝑌 , 𝑤 〉 ∈ ( 𝐴 × 𝐵 ) ) |
89 |
76 70
|
opelxpd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 〉 ∈ ( ( 𝑋 𝐻 𝑋 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
90 |
15 2 6 7 28 59 67 59 69 17
|
xpchom2 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 𝑋 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑋 , 𝑤 〉 ) = ( ( 𝑋 𝐻 𝑋 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
91 |
89 90
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 〉 ∈ ( 〈 𝑋 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑋 , 𝑤 〉 ) ) |
92 |
62 77
|
opelxpd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝐾 , ( 𝐼 ‘ 𝑤 ) 〉 ∈ ( ( 𝑋 𝐻 𝑌 ) × ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
93 |
15 2 6 7 28 59 69 61 69 17
|
xpchom2 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 𝑋 , 𝑤 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑤 〉 ) = ( ( 𝑋 𝐻 𝑌 ) × ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
94 |
92 93
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝐾 , ( 𝐼 ‘ 𝑤 ) 〉 ∈ ( 〈 𝑋 , 𝑤 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑤 〉 ) ) |
95 |
16 17 75 84 85 86 87 88 91 94
|
funcco |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ ( 〈 𝐾 , ( 𝐼 ‘ 𝑤 ) 〉 ( 〈 〈 𝑋 , 𝑧 〉 , 〈 𝑋 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑤 〉 ) 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 〉 ) ) = ( ( ( 〈 𝑋 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ 〈 𝐾 , ( 𝐼 ‘ 𝑤 ) 〉 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑤 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑤 〉 ) ) ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 〉 ) ) ) |
96 |
26
|
3ad2antr1 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝑌 , 𝑧 〉 ∈ ( 𝐴 × 𝐵 ) ) |
97 |
62 79
|
opelxpd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝐾 , ( 𝐼 ‘ 𝑧 ) 〉 ∈ ( ( 𝑋 𝐻 𝑌 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) |
98 |
15 2 6 7 28 59 67 61 67 17
|
xpchom2 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 𝑋 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑧 〉 ) = ( ( 𝑋 𝐻 𝑌 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) |
99 |
97 98
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝐾 , ( 𝐼 ‘ 𝑧 ) 〉 ∈ ( 〈 𝑋 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑧 〉 ) ) |
100 |
80 70
|
opelxpd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 〉 ∈ ( ( 𝑌 𝐻 𝑌 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
101 |
15 2 6 7 28 61 67 61 69 17
|
xpchom2 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 𝑌 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑤 〉 ) = ( ( 𝑌 𝐻 𝑌 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
102 |
100 101
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 〉 ∈ ( 〈 𝑌 , 𝑧 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑤 〉 ) ) |
103 |
16 17 75 84 85 86 96 88 99 102
|
funcco |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ ( 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 〉 ( 〈 〈 𝑋 , 𝑧 〉 , 〈 𝑌 , 𝑧 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑤 〉 ) 〈 𝐾 , ( 𝐼 ‘ 𝑧 ) 〉 ) ) = ( ( ( 〈 𝑌 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 〉 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑤 〉 ) ) ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ‘ 〈 𝐾 , ( 𝐼 ‘ 𝑧 ) 〉 ) ) ) |
104 |
83 95 103
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( ( 〈 𝑋 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ 〈 𝐾 , ( 𝐼 ‘ 𝑤 ) 〉 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑤 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑤 〉 ) ) ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 〉 ) ) = ( ( ( 〈 𝑌 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 〉 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑤 〉 ) ) ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ‘ 〈 𝐾 , ( 𝐼 ‘ 𝑧 ) 〉 ) ) ) |
105 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
106 |
1 2 58 66 105 6 59 41 67
|
curf11 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) = ( 𝑋 ( 1st ‘ 𝐹 ) 𝑧 ) ) |
107 |
106 43
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) ) |
108 |
1 2 58 66 105 6 59 41 69
|
curf11 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑤 ) = ( 𝑋 ( 1st ‘ 𝐹 ) 𝑤 ) ) |
109 |
|
df-ov |
⊢ ( 𝑋 ( 1st ‘ 𝐹 ) 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑤 〉 ) |
110 |
108 109
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑤 〉 ) ) |
111 |
107 110
|
opeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑤 ) 〉 = 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑤 〉 ) 〉 ) |
112 |
1 2 58 66 105 6 61 45 69
|
curf11 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) = ( 𝑌 ( 1st ‘ 𝐹 ) 𝑤 ) ) |
113 |
|
df-ov |
⊢ ( 𝑌 ( 1st ‘ 𝐹 ) 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑤 〉 ) |
114 |
112 113
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑤 〉 ) ) |
115 |
111 114
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) = ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑤 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑤 〉 ) ) ) |
116 |
1 2 58 66 105 6 7 8 59 61 62 12 69
|
curf2val |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝐿 ‘ 𝑤 ) = ( 𝐾 ( 〈 𝑋 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ( 𝐼 ‘ 𝑤 ) ) ) |
117 |
|
df-ov |
⊢ ( 𝐾 ( 〈 𝑋 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ( 𝐼 ‘ 𝑤 ) ) = ( ( 〈 𝑋 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ 〈 𝐾 , ( 𝐼 ‘ 𝑤 ) 〉 ) |
118 |
116 117
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝐿 ‘ 𝑤 ) = ( ( 〈 𝑋 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ 〈 𝐾 , ( 𝐼 ‘ 𝑤 ) 〉 ) ) |
119 |
1 2 58 66 105 6 59 41 67 28 57 69 70
|
curf12 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝑧 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) 𝑤 ) ‘ 𝑓 ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) 𝑓 ) ) |
120 |
|
df-ov |
⊢ ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) 𝑓 ) = ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 〉 ) |
121 |
119 120
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝑧 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) 𝑤 ) ‘ 𝑓 ) = ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 〉 ) ) |
122 |
115 118 121
|
oveq123d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝐿 ‘ 𝑤 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) ( ( 𝑧 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) 𝑤 ) ‘ 𝑓 ) ) = ( ( ( 〈 𝑋 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ 〈 𝐾 , ( 𝐼 ‘ 𝑤 ) 〉 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑤 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑤 〉 ) ) ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 〉 ) ) ) |
123 |
1 2 58 66 105 6 61 45 67
|
curf11 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) = ( 𝑌 ( 1st ‘ 𝐹 ) 𝑧 ) ) |
124 |
123 47
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) ) |
125 |
107 124
|
opeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 = 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) 〉 ) |
126 |
125 114
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) = ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑤 〉 ) ) ) |
127 |
1 2 58 66 105 6 61 45 67 28 57 69 70
|
curf12 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝑧 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) 𝑤 ) ‘ 𝑓 ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑌 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) 𝑓 ) ) |
128 |
|
df-ov |
⊢ ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑌 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) 𝑓 ) = ( ( 〈 𝑌 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 〉 ) |
129 |
127 128
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝑧 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) 𝑤 ) ‘ 𝑓 ) = ( ( 〈 𝑌 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 〉 ) ) |
130 |
1 2 58 66 105 6 7 8 59 61 62 12 67
|
curf2val |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝐿 ‘ 𝑧 ) = ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) |
131 |
|
df-ov |
⊢ ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) = ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ‘ 〈 𝐾 , ( 𝐼 ‘ 𝑧 ) 〉 ) |
132 |
130 131
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝐿 ‘ 𝑧 ) = ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ‘ 〈 𝐾 , ( 𝐼 ‘ 𝑧 ) 〉 ) ) |
133 |
126 129 132
|
oveq123d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( ( 𝑧 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) 𝑤 ) ‘ 𝑓 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) ( 𝐿 ‘ 𝑧 ) ) = ( ( ( 〈 𝑌 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 〉 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑋 , 𝑧 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑧 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑌 , 𝑤 〉 ) ) ( ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ‘ 〈 𝐾 , ( 𝐼 ‘ 𝑧 ) 〉 ) ) ) |
134 |
104 122 133
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝐿 ‘ 𝑤 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) ( ( 𝑧 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) 𝑤 ) ‘ 𝑓 ) ) = ( ( ( 𝑧 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) 𝑤 ) ‘ 𝑓 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) ( 𝐿 ‘ 𝑧 ) ) ) |
135 |
134
|
ralrimivvva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( 𝐿 ‘ 𝑤 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) ( ( 𝑧 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) 𝑤 ) ‘ 𝑓 ) ) = ( ( ( 𝑧 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) 𝑤 ) ‘ 𝑓 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) ( 𝐿 ‘ 𝑧 ) ) ) |
136 |
1 2 3 4 5 6 9 41
|
curf1cl |
⊢ ( 𝜑 → ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ∈ ( 𝐷 Func 𝐸 ) ) |
137 |
1 2 3 4 5 6 10 45
|
curf1cl |
⊢ ( 𝜑 → ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ∈ ( 𝐷 Func 𝐸 ) ) |
138 |
13 6 28 18 84 136 137
|
isnat2 |
⊢ ( 𝜑 → ( 𝐿 ∈ ( ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) 𝑁 ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ↔ ( 𝐿 ∈ X 𝑧 ∈ 𝐵 ( ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( 𝐿 ‘ 𝑤 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) ( ( 𝑧 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) 𝑤 ) ‘ 𝑓 ) ) = ( ( ( 𝑧 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) 𝑤 ) ‘ 𝑓 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) ( 𝐿 ‘ 𝑧 ) ) ) ) ) |
139 |
56 135 138
|
mpbir2and |
⊢ ( 𝜑 → 𝐿 ∈ ( ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) 𝑁 ( ( 1st ‘ 𝐺 ) ‘ 𝑌 ) ) ) |