Metamath Proof Explorer


Theorem curf2cl

Description: The curry functor at a morphism is a natural transformation. (Contributed by Mario Carneiro, 13-Jan-2017)

Ref Expression
Hypotheses curf2.g 𝐺 = ( ⟨ 𝐶 , 𝐷 ⟩ curryF 𝐹 )
curf2.a 𝐴 = ( Base ‘ 𝐶 )
curf2.c ( 𝜑𝐶 ∈ Cat )
curf2.d ( 𝜑𝐷 ∈ Cat )
curf2.f ( 𝜑𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) )
curf2.b 𝐵 = ( Base ‘ 𝐷 )
curf2.h 𝐻 = ( Hom ‘ 𝐶 )
curf2.i 𝐼 = ( Id ‘ 𝐷 )
curf2.x ( 𝜑𝑋𝐴 )
curf2.y ( 𝜑𝑌𝐴 )
curf2.k ( 𝜑𝐾 ∈ ( 𝑋 𝐻 𝑌 ) )
curf2.l 𝐿 = ( ( 𝑋 ( 2nd𝐺 ) 𝑌 ) ‘ 𝐾 )
curf2.n 𝑁 = ( 𝐷 Nat 𝐸 )
Assertion curf2cl ( 𝜑𝐿 ∈ ( ( ( 1st𝐺 ) ‘ 𝑋 ) 𝑁 ( ( 1st𝐺 ) ‘ 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 curf2.g 𝐺 = ( ⟨ 𝐶 , 𝐷 ⟩ curryF 𝐹 )
2 curf2.a 𝐴 = ( Base ‘ 𝐶 )
3 curf2.c ( 𝜑𝐶 ∈ Cat )
4 curf2.d ( 𝜑𝐷 ∈ Cat )
5 curf2.f ( 𝜑𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) )
6 curf2.b 𝐵 = ( Base ‘ 𝐷 )
7 curf2.h 𝐻 = ( Hom ‘ 𝐶 )
8 curf2.i 𝐼 = ( Id ‘ 𝐷 )
9 curf2.x ( 𝜑𝑋𝐴 )
10 curf2.y ( 𝜑𝑌𝐴 )
11 curf2.k ( 𝜑𝐾 ∈ ( 𝑋 𝐻 𝑌 ) )
12 curf2.l 𝐿 = ( ( 𝑋 ( 2nd𝐺 ) 𝑌 ) ‘ 𝐾 )
13 curf2.n 𝑁 = ( 𝐷 Nat 𝐸 )
14 1 2 3 4 5 6 7 8 9 10 11 12 curf2 ( 𝜑𝐿 = ( 𝑧𝐵 ↦ ( 𝐾 ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑧 ⟩ ) ( 𝐼𝑧 ) ) ) )
15 eqid ( 𝐶 ×c 𝐷 ) = ( 𝐶 ×c 𝐷 )
16 15 2 6 xpcbas ( 𝐴 × 𝐵 ) = ( Base ‘ ( 𝐶 ×c 𝐷 ) )
17 eqid ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) = ( Hom ‘ ( 𝐶 ×c 𝐷 ) )
18 eqid ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 )
19 relfunc Rel ( ( 𝐶 ×c 𝐷 ) Func 𝐸 )
20 1st2ndbr ( ( Rel ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ∧ 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) → ( 1st𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd𝐹 ) )
21 19 5 20 sylancr ( 𝜑 → ( 1st𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd𝐹 ) )
22 21 adantr ( ( 𝜑𝑧𝐵 ) → ( 1st𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd𝐹 ) )
23 opelxpi ( ( 𝑋𝐴𝑧𝐵 ) → ⟨ 𝑋 , 𝑧 ⟩ ∈ ( 𝐴 × 𝐵 ) )
24 9 23 sylan ( ( 𝜑𝑧𝐵 ) → ⟨ 𝑋 , 𝑧 ⟩ ∈ ( 𝐴 × 𝐵 ) )
25 opelxpi ( ( 𝑌𝐴𝑧𝐵 ) → ⟨ 𝑌 , 𝑧 ⟩ ∈ ( 𝐴 × 𝐵 ) )
26 10 25 sylan ( ( 𝜑𝑧𝐵 ) → ⟨ 𝑌 , 𝑧 ⟩ ∈ ( 𝐴 × 𝐵 ) )
27 16 17 18 22 24 26 funcf2 ( ( 𝜑𝑧𝐵 ) → ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑧 ⟩ ) : ( ⟨ 𝑋 , 𝑧 ⟩ ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) ⟨ 𝑌 , 𝑧 ⟩ ) ⟶ ( ( ( 1st𝐹 ) ‘ ⟨ 𝑋 , 𝑧 ⟩ ) ( Hom ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ⟨ 𝑌 , 𝑧 ⟩ ) ) )
28 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
29 9 adantr ( ( 𝜑𝑧𝐵 ) → 𝑋𝐴 )
30 simpr ( ( 𝜑𝑧𝐵 ) → 𝑧𝐵 )
31 10 adantr ( ( 𝜑𝑧𝐵 ) → 𝑌𝐴 )
32 15 2 6 7 28 29 30 31 30 17 xpchom2 ( ( 𝜑𝑧𝐵 ) → ( ⟨ 𝑋 , 𝑧 ⟩ ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) ⟨ 𝑌 , 𝑧 ⟩ ) = ( ( 𝑋 𝐻 𝑌 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑧 ) ) )
33 32 feq2d ( ( 𝜑𝑧𝐵 ) → ( ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑧 ⟩ ) : ( ⟨ 𝑋 , 𝑧 ⟩ ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) ⟨ 𝑌 , 𝑧 ⟩ ) ⟶ ( ( ( 1st𝐹 ) ‘ ⟨ 𝑋 , 𝑧 ⟩ ) ( Hom ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ⟨ 𝑌 , 𝑧 ⟩ ) ) ↔ ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑧 ⟩ ) : ( ( 𝑋 𝐻 𝑌 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑧 ) ) ⟶ ( ( ( 1st𝐹 ) ‘ ⟨ 𝑋 , 𝑧 ⟩ ) ( Hom ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ⟨ 𝑌 , 𝑧 ⟩ ) ) ) )
34 27 33 mpbid ( ( 𝜑𝑧𝐵 ) → ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑧 ⟩ ) : ( ( 𝑋 𝐻 𝑌 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑧 ) ) ⟶ ( ( ( 1st𝐹 ) ‘ ⟨ 𝑋 , 𝑧 ⟩ ) ( Hom ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ⟨ 𝑌 , 𝑧 ⟩ ) ) )
35 11 adantr ( ( 𝜑𝑧𝐵 ) → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) )
36 4 adantr ( ( 𝜑𝑧𝐵 ) → 𝐷 ∈ Cat )
37 6 28 8 36 30 catidcl ( ( 𝜑𝑧𝐵 ) → ( 𝐼𝑧 ) ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑧 ) )
38 34 35 37 fovrnd ( ( 𝜑𝑧𝐵 ) → ( 𝐾 ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑧 ⟩ ) ( 𝐼𝑧 ) ) ∈ ( ( ( 1st𝐹 ) ‘ ⟨ 𝑋 , 𝑧 ⟩ ) ( Hom ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ⟨ 𝑌 , 𝑧 ⟩ ) ) )
39 3 adantr ( ( 𝜑𝑧𝐵 ) → 𝐶 ∈ Cat )
40 5 adantr ( ( 𝜑𝑧𝐵 ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) )
41 eqid ( ( 1st𝐺 ) ‘ 𝑋 ) = ( ( 1st𝐺 ) ‘ 𝑋 )
42 1 2 39 36 40 6 29 41 30 curf11 ( ( 𝜑𝑧𝐵 ) → ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) = ( 𝑋 ( 1st𝐹 ) 𝑧 ) )
43 df-ov ( 𝑋 ( 1st𝐹 ) 𝑧 ) = ( ( 1st𝐹 ) ‘ ⟨ 𝑋 , 𝑧 ⟩ )
44 42 43 eqtrdi ( ( 𝜑𝑧𝐵 ) → ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) = ( ( 1st𝐹 ) ‘ ⟨ 𝑋 , 𝑧 ⟩ ) )
45 eqid ( ( 1st𝐺 ) ‘ 𝑌 ) = ( ( 1st𝐺 ) ‘ 𝑌 )
46 1 2 39 36 40 6 31 45 30 curf11 ( ( 𝜑𝑧𝐵 ) → ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) = ( 𝑌 ( 1st𝐹 ) 𝑧 ) )
47 df-ov ( 𝑌 ( 1st𝐹 ) 𝑧 ) = ( ( 1st𝐹 ) ‘ ⟨ 𝑌 , 𝑧 ⟩ )
48 46 47 eqtrdi ( ( 𝜑𝑧𝐵 ) → ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) = ( ( 1st𝐹 ) ‘ ⟨ 𝑌 , 𝑧 ⟩ ) )
49 44 48 oveq12d ( ( 𝜑𝑧𝐵 ) → ( ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) = ( ( ( 1st𝐹 ) ‘ ⟨ 𝑋 , 𝑧 ⟩ ) ( Hom ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ⟨ 𝑌 , 𝑧 ⟩ ) ) )
50 38 49 eleqtrrd ( ( 𝜑𝑧𝐵 ) → ( 𝐾 ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑧 ⟩ ) ( 𝐼𝑧 ) ) ∈ ( ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) )
51 50 ralrimiva ( 𝜑 → ∀ 𝑧𝐵 ( 𝐾 ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑧 ⟩ ) ( 𝐼𝑧 ) ) ∈ ( ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) )
52 6 fvexi 𝐵 ∈ V
53 mptelixpg ( 𝐵 ∈ V → ( ( 𝑧𝐵 ↦ ( 𝐾 ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑧 ⟩ ) ( 𝐼𝑧 ) ) ) ∈ X 𝑧𝐵 ( ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑧𝐵 ( 𝐾 ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑧 ⟩ ) ( 𝐼𝑧 ) ) ∈ ( ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) ) )
54 52 53 ax-mp ( ( 𝑧𝐵 ↦ ( 𝐾 ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑧 ⟩ ) ( 𝐼𝑧 ) ) ) ∈ X 𝑧𝐵 ( ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑧𝐵 ( 𝐾 ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑧 ⟩ ) ( 𝐼𝑧 ) ) ∈ ( ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) )
55 51 54 sylibr ( 𝜑 → ( 𝑧𝐵 ↦ ( 𝐾 ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑧 ⟩ ) ( 𝐼𝑧 ) ) ) ∈ X 𝑧𝐵 ( ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) )
56 14 55 eqeltrd ( 𝜑𝐿X 𝑧𝐵 ( ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) )
57 eqid ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 )
58 3 adantr ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝐶 ∈ Cat )
59 9 adantr ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑋𝐴 )
60 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
61 10 adantr ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑌𝐴 )
62 11 adantr ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) )
63 2 7 57 58 59 60 61 62 catrid ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝐾 ( ⟨ 𝑋 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) = 𝐾 )
64 2 7 57 58 59 60 61 62 catlid ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) 𝐾 ) = 𝐾 )
65 63 64 eqtr4d ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝐾 ( ⟨ 𝑋 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) 𝐾 ) )
66 4 adantr ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝐷 ∈ Cat )
67 simpr1 ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑧𝐵 )
68 eqid ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 )
69 simpr2 ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑤𝐵 )
70 simpr3 ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) )
71 6 28 8 66 67 68 69 70 catlid ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝐼𝑤 ) ( ⟨ 𝑧 , 𝑤 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = 𝑓 )
72 6 28 8 66 67 68 69 70 catrid ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝑓 ( ⟨ 𝑧 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝐼𝑧 ) ) = 𝑓 )
73 71 72 eqtr4d ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝐼𝑤 ) ( ⟨ 𝑧 , 𝑤 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) = ( 𝑓 ( ⟨ 𝑧 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝐼𝑧 ) ) )
74 65 73 opeq12d ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ⟨ ( 𝐾 ( ⟨ 𝑋 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) , ( ( 𝐼𝑤 ) ( ⟨ 𝑧 , 𝑤 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) ⟩ = ⟨ ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) 𝐾 ) , ( 𝑓 ( ⟨ 𝑧 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝐼𝑧 ) ) ⟩ )
75 eqid ( comp ‘ ( 𝐶 ×c 𝐷 ) ) = ( comp ‘ ( 𝐶 ×c 𝐷 ) )
76 2 7 57 58 59 catidcl ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ ( 𝑋 𝐻 𝑋 ) )
77 6 28 8 66 69 catidcl ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝐼𝑤 ) ∈ ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) )
78 15 2 6 7 28 59 67 59 69 60 68 75 61 69 76 70 62 77 xpcco2 ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ⟨ 𝐾 , ( 𝐼𝑤 ) ⟩ ( ⟨ ⟨ 𝑋 , 𝑧 ⟩ , ⟨ 𝑋 , 𝑤 ⟩ ⟩ ( comp ‘ ( 𝐶 ×c 𝐷 ) ) ⟨ 𝑌 , 𝑤 ⟩ ) ⟨ ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 ⟩ ) = ⟨ ( 𝐾 ( ⟨ 𝑋 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) , ( ( 𝐼𝑤 ) ( ⟨ 𝑧 , 𝑤 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) 𝑓 ) ⟩ )
79 37 3ad2antr1 ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝐼𝑧 ) ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑧 ) )
80 2 7 57 58 61 catidcl ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ∈ ( 𝑌 𝐻 𝑌 ) )
81 15 2 6 7 28 59 67 61 67 60 68 75 61 69 62 79 80 70 xpcco2 ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ⟨ ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 ⟩ ( ⟨ ⟨ 𝑋 , 𝑧 ⟩ , ⟨ 𝑌 , 𝑧 ⟩ ⟩ ( comp ‘ ( 𝐶 ×c 𝐷 ) ) ⟨ 𝑌 , 𝑤 ⟩ ) ⟨ 𝐾 , ( 𝐼𝑧 ) ⟩ ) = ⟨ ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) 𝐾 ) , ( 𝑓 ( ⟨ 𝑧 , 𝑧 ⟩ ( comp ‘ 𝐷 ) 𝑤 ) ( 𝐼𝑧 ) ) ⟩ )
82 74 78 81 3eqtr4d ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ⟨ 𝐾 , ( 𝐼𝑤 ) ⟩ ( ⟨ ⟨ 𝑋 , 𝑧 ⟩ , ⟨ 𝑋 , 𝑤 ⟩ ⟩ ( comp ‘ ( 𝐶 ×c 𝐷 ) ) ⟨ 𝑌 , 𝑤 ⟩ ) ⟨ ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 ⟩ ) = ( ⟨ ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 ⟩ ( ⟨ ⟨ 𝑋 , 𝑧 ⟩ , ⟨ 𝑌 , 𝑧 ⟩ ⟩ ( comp ‘ ( 𝐶 ×c 𝐷 ) ) ⟨ 𝑌 , 𝑤 ⟩ ) ⟨ 𝐾 , ( 𝐼𝑧 ) ⟩ ) )
83 82 fveq2d ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑤 ⟩ ) ‘ ( ⟨ 𝐾 , ( 𝐼𝑤 ) ⟩ ( ⟨ ⟨ 𝑋 , 𝑧 ⟩ , ⟨ 𝑋 , 𝑤 ⟩ ⟩ ( comp ‘ ( 𝐶 ×c 𝐷 ) ) ⟨ 𝑌 , 𝑤 ⟩ ) ⟨ ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 ⟩ ) ) = ( ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑤 ⟩ ) ‘ ( ⟨ ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 ⟩ ( ⟨ ⟨ 𝑋 , 𝑧 ⟩ , ⟨ 𝑌 , 𝑧 ⟩ ⟩ ( comp ‘ ( 𝐶 ×c 𝐷 ) ) ⟨ 𝑌 , 𝑤 ⟩ ) ⟨ 𝐾 , ( 𝐼𝑧 ) ⟩ ) ) )
84 eqid ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 )
85 21 adantr ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 1st𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd𝐹 ) )
86 24 3ad2antr1 ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ⟨ 𝑋 , 𝑧 ⟩ ∈ ( 𝐴 × 𝐵 ) )
87 59 69 opelxpd ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ⟨ 𝑋 , 𝑤 ⟩ ∈ ( 𝐴 × 𝐵 ) )
88 61 69 opelxpd ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ⟨ 𝑌 , 𝑤 ⟩ ∈ ( 𝐴 × 𝐵 ) )
89 76 70 opelxpd ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ⟨ ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 ⟩ ∈ ( ( 𝑋 𝐻 𝑋 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) )
90 15 2 6 7 28 59 67 59 69 17 xpchom2 ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ⟨ 𝑋 , 𝑧 ⟩ ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) ⟨ 𝑋 , 𝑤 ⟩ ) = ( ( 𝑋 𝐻 𝑋 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) )
91 89 90 eleqtrrd ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ⟨ ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 ⟩ ∈ ( ⟨ 𝑋 , 𝑧 ⟩ ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) ⟨ 𝑋 , 𝑤 ⟩ ) )
92 62 77 opelxpd ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ⟨ 𝐾 , ( 𝐼𝑤 ) ⟩ ∈ ( ( 𝑋 𝐻 𝑌 ) × ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) )
93 15 2 6 7 28 59 69 61 69 17 xpchom2 ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ⟨ 𝑋 , 𝑤 ⟩ ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) ⟨ 𝑌 , 𝑤 ⟩ ) = ( ( 𝑋 𝐻 𝑌 ) × ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) )
94 92 93 eleqtrrd ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ⟨ 𝐾 , ( 𝐼𝑤 ) ⟩ ∈ ( ⟨ 𝑋 , 𝑤 ⟩ ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) ⟨ 𝑌 , 𝑤 ⟩ ) )
95 16 17 75 84 85 86 87 88 91 94 funcco ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑤 ⟩ ) ‘ ( ⟨ 𝐾 , ( 𝐼𝑤 ) ⟩ ( ⟨ ⟨ 𝑋 , 𝑧 ⟩ , ⟨ 𝑋 , 𝑤 ⟩ ⟩ ( comp ‘ ( 𝐶 ×c 𝐷 ) ) ⟨ 𝑌 , 𝑤 ⟩ ) ⟨ ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 ⟩ ) ) = ( ( ( ⟨ 𝑋 , 𝑤 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑤 ⟩ ) ‘ ⟨ 𝐾 , ( 𝐼𝑤 ) ⟩ ) ( ⟨ ( ( 1st𝐹 ) ‘ ⟨ 𝑋 , 𝑧 ⟩ ) , ( ( 1st𝐹 ) ‘ ⟨ 𝑋 , 𝑤 ⟩ ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ⟨ 𝑌 , 𝑤 ⟩ ) ) ( ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑋 , 𝑤 ⟩ ) ‘ ⟨ ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 ⟩ ) ) )
96 26 3ad2antr1 ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ⟨ 𝑌 , 𝑧 ⟩ ∈ ( 𝐴 × 𝐵 ) )
97 62 79 opelxpd ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ⟨ 𝐾 , ( 𝐼𝑧 ) ⟩ ∈ ( ( 𝑋 𝐻 𝑌 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑧 ) ) )
98 15 2 6 7 28 59 67 61 67 17 xpchom2 ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ⟨ 𝑋 , 𝑧 ⟩ ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) ⟨ 𝑌 , 𝑧 ⟩ ) = ( ( 𝑋 𝐻 𝑌 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑧 ) ) )
99 97 98 eleqtrrd ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ⟨ 𝐾 , ( 𝐼𝑧 ) ⟩ ∈ ( ⟨ 𝑋 , 𝑧 ⟩ ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) ⟨ 𝑌 , 𝑧 ⟩ ) )
100 80 70 opelxpd ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ⟨ ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 ⟩ ∈ ( ( 𝑌 𝐻 𝑌 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) )
101 15 2 6 7 28 61 67 61 69 17 xpchom2 ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ⟨ 𝑌 , 𝑧 ⟩ ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) ⟨ 𝑌 , 𝑤 ⟩ ) = ( ( 𝑌 𝐻 𝑌 ) × ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) )
102 100 101 eleqtrrd ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ⟨ ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 ⟩ ∈ ( ⟨ 𝑌 , 𝑧 ⟩ ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) ⟨ 𝑌 , 𝑤 ⟩ ) )
103 16 17 75 84 85 86 96 88 99 102 funcco ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑤 ⟩ ) ‘ ( ⟨ ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 ⟩ ( ⟨ ⟨ 𝑋 , 𝑧 ⟩ , ⟨ 𝑌 , 𝑧 ⟩ ⟩ ( comp ‘ ( 𝐶 ×c 𝐷 ) ) ⟨ 𝑌 , 𝑤 ⟩ ) ⟨ 𝐾 , ( 𝐼𝑧 ) ⟩ ) ) = ( ( ( ⟨ 𝑌 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑤 ⟩ ) ‘ ⟨ ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 ⟩ ) ( ⟨ ( ( 1st𝐹 ) ‘ ⟨ 𝑋 , 𝑧 ⟩ ) , ( ( 1st𝐹 ) ‘ ⟨ 𝑌 , 𝑧 ⟩ ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ⟨ 𝑌 , 𝑤 ⟩ ) ) ( ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑧 ⟩ ) ‘ ⟨ 𝐾 , ( 𝐼𝑧 ) ⟩ ) ) )
104 83 95 103 3eqtr3d ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( ( ⟨ 𝑋 , 𝑤 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑤 ⟩ ) ‘ ⟨ 𝐾 , ( 𝐼𝑤 ) ⟩ ) ( ⟨ ( ( 1st𝐹 ) ‘ ⟨ 𝑋 , 𝑧 ⟩ ) , ( ( 1st𝐹 ) ‘ ⟨ 𝑋 , 𝑤 ⟩ ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ⟨ 𝑌 , 𝑤 ⟩ ) ) ( ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑋 , 𝑤 ⟩ ) ‘ ⟨ ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 ⟩ ) ) = ( ( ( ⟨ 𝑌 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑤 ⟩ ) ‘ ⟨ ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 ⟩ ) ( ⟨ ( ( 1st𝐹 ) ‘ ⟨ 𝑋 , 𝑧 ⟩ ) , ( ( 1st𝐹 ) ‘ ⟨ 𝑌 , 𝑧 ⟩ ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ⟨ 𝑌 , 𝑤 ⟩ ) ) ( ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑧 ⟩ ) ‘ ⟨ 𝐾 , ( 𝐼𝑧 ) ⟩ ) ) )
105 5 adantr ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) )
106 1 2 58 66 105 6 59 41 67 curf11 ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) = ( 𝑋 ( 1st𝐹 ) 𝑧 ) )
107 106 43 eqtrdi ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) = ( ( 1st𝐹 ) ‘ ⟨ 𝑋 , 𝑧 ⟩ ) )
108 1 2 58 66 105 6 59 41 69 curf11 ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑤 ) = ( 𝑋 ( 1st𝐹 ) 𝑤 ) )
109 df-ov ( 𝑋 ( 1st𝐹 ) 𝑤 ) = ( ( 1st𝐹 ) ‘ ⟨ 𝑋 , 𝑤 ⟩ )
110 108 109 eqtrdi ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑤 ) = ( ( 1st𝐹 ) ‘ ⟨ 𝑋 , 𝑤 ⟩ ) )
111 107 110 opeq12d ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ⟨ ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑤 ) ⟩ = ⟨ ( ( 1st𝐹 ) ‘ ⟨ 𝑋 , 𝑧 ⟩ ) , ( ( 1st𝐹 ) ‘ ⟨ 𝑋 , 𝑤 ⟩ ) ⟩ )
112 1 2 58 66 105 6 61 45 69 curf11 ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) = ( 𝑌 ( 1st𝐹 ) 𝑤 ) )
113 df-ov ( 𝑌 ( 1st𝐹 ) 𝑤 ) = ( ( 1st𝐹 ) ‘ ⟨ 𝑌 , 𝑤 ⟩ )
114 112 113 eqtrdi ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) = ( ( 1st𝐹 ) ‘ ⟨ 𝑌 , 𝑤 ⟩ ) )
115 111 114 oveq12d ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ⟨ ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑤 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) = ( ⟨ ( ( 1st𝐹 ) ‘ ⟨ 𝑋 , 𝑧 ⟩ ) , ( ( 1st𝐹 ) ‘ ⟨ 𝑋 , 𝑤 ⟩ ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ⟨ 𝑌 , 𝑤 ⟩ ) ) )
116 1 2 58 66 105 6 7 8 59 61 62 12 69 curf2val ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝐿𝑤 ) = ( 𝐾 ( ⟨ 𝑋 , 𝑤 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑤 ⟩ ) ( 𝐼𝑤 ) ) )
117 df-ov ( 𝐾 ( ⟨ 𝑋 , 𝑤 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑤 ⟩ ) ( 𝐼𝑤 ) ) = ( ( ⟨ 𝑋 , 𝑤 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑤 ⟩ ) ‘ ⟨ 𝐾 , ( 𝐼𝑤 ) ⟩ )
118 116 117 eqtrdi ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝐿𝑤 ) = ( ( ⟨ 𝑋 , 𝑤 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑤 ⟩ ) ‘ ⟨ 𝐾 , ( 𝐼𝑤 ) ⟩ ) )
119 1 2 58 66 105 6 59 41 67 28 57 69 70 curf12 ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝑧 ( 2nd ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) 𝑤 ) ‘ 𝑓 ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑋 , 𝑤 ⟩ ) 𝑓 ) )
120 df-ov ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑋 , 𝑤 ⟩ ) 𝑓 ) = ( ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑋 , 𝑤 ⟩ ) ‘ ⟨ ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 ⟩ )
121 119 120 eqtrdi ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝑧 ( 2nd ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) 𝑤 ) ‘ 𝑓 ) = ( ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑋 , 𝑤 ⟩ ) ‘ ⟨ ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 ⟩ ) )
122 115 118 121 oveq123d ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝐿𝑤 ) ( ⟨ ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑤 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) ( ( 𝑧 ( 2nd ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) 𝑤 ) ‘ 𝑓 ) ) = ( ( ( ⟨ 𝑋 , 𝑤 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑤 ⟩ ) ‘ ⟨ 𝐾 , ( 𝐼𝑤 ) ⟩ ) ( ⟨ ( ( 1st𝐹 ) ‘ ⟨ 𝑋 , 𝑧 ⟩ ) , ( ( 1st𝐹 ) ‘ ⟨ 𝑋 , 𝑤 ⟩ ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ⟨ 𝑌 , 𝑤 ⟩ ) ) ( ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑋 , 𝑤 ⟩ ) ‘ ⟨ ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) , 𝑓 ⟩ ) ) )
123 1 2 58 66 105 6 61 45 67 curf11 ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) = ( 𝑌 ( 1st𝐹 ) 𝑧 ) )
124 123 47 eqtrdi ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) = ( ( 1st𝐹 ) ‘ ⟨ 𝑌 , 𝑧 ⟩ ) )
125 107 124 opeq12d ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ⟨ ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ⟩ = ⟨ ( ( 1st𝐹 ) ‘ ⟨ 𝑋 , 𝑧 ⟩ ) , ( ( 1st𝐹 ) ‘ ⟨ 𝑌 , 𝑧 ⟩ ) ⟩ )
126 125 114 oveq12d ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ⟨ ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) = ( ⟨ ( ( 1st𝐹 ) ‘ ⟨ 𝑋 , 𝑧 ⟩ ) , ( ( 1st𝐹 ) ‘ ⟨ 𝑌 , 𝑧 ⟩ ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ⟨ 𝑌 , 𝑤 ⟩ ) ) )
127 1 2 58 66 105 6 61 45 67 28 57 69 70 curf12 ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝑧 ( 2nd ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) 𝑤 ) ‘ 𝑓 ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( ⟨ 𝑌 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑤 ⟩ ) 𝑓 ) )
128 df-ov ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( ⟨ 𝑌 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑤 ⟩ ) 𝑓 ) = ( ( ⟨ 𝑌 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑤 ⟩ ) ‘ ⟨ ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 ⟩ )
129 127 128 eqtrdi ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝑧 ( 2nd ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) 𝑤 ) ‘ 𝑓 ) = ( ( ⟨ 𝑌 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑤 ⟩ ) ‘ ⟨ ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 ⟩ ) )
130 1 2 58 66 105 6 7 8 59 61 62 12 67 curf2val ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝐿𝑧 ) = ( 𝐾 ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑧 ⟩ ) ( 𝐼𝑧 ) ) )
131 df-ov ( 𝐾 ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑧 ⟩ ) ( 𝐼𝑧 ) ) = ( ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑧 ⟩ ) ‘ ⟨ 𝐾 , ( 𝐼𝑧 ) ⟩ )
132 130 131 eqtrdi ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝐿𝑧 ) = ( ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑧 ⟩ ) ‘ ⟨ 𝐾 , ( 𝐼𝑧 ) ⟩ ) )
133 126 129 132 oveq123d ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( ( 𝑧 ( 2nd ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) 𝑤 ) ‘ 𝑓 ) ( ⟨ ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) ( 𝐿𝑧 ) ) = ( ( ( ⟨ 𝑌 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑤 ⟩ ) ‘ ⟨ ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) , 𝑓 ⟩ ) ( ⟨ ( ( 1st𝐹 ) ‘ ⟨ 𝑋 , 𝑧 ⟩ ) , ( ( 1st𝐹 ) ‘ ⟨ 𝑌 , 𝑧 ⟩ ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st𝐹 ) ‘ ⟨ 𝑌 , 𝑤 ⟩ ) ) ( ( ⟨ 𝑋 , 𝑧 ⟩ ( 2nd𝐹 ) ⟨ 𝑌 , 𝑧 ⟩ ) ‘ ⟨ 𝐾 , ( 𝐼𝑧 ) ⟩ ) ) )
134 104 122 133 3eqtr4d ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝐿𝑤 ) ( ⟨ ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑤 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) ( ( 𝑧 ( 2nd ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) 𝑤 ) ‘ 𝑓 ) ) = ( ( ( 𝑧 ( 2nd ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) 𝑤 ) ‘ 𝑓 ) ( ⟨ ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) ( 𝐿𝑧 ) ) )
135 134 ralrimivvva ( 𝜑 → ∀ 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( 𝐿𝑤 ) ( ⟨ ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑤 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) ( ( 𝑧 ( 2nd ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) 𝑤 ) ‘ 𝑓 ) ) = ( ( ( 𝑧 ( 2nd ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) 𝑤 ) ‘ 𝑓 ) ( ⟨ ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) ( 𝐿𝑧 ) ) )
136 1 2 3 4 5 6 9 41 curf1cl ( 𝜑 → ( ( 1st𝐺 ) ‘ 𝑋 ) ∈ ( 𝐷 Func 𝐸 ) )
137 1 2 3 4 5 6 10 45 curf1cl ( 𝜑 → ( ( 1st𝐺 ) ‘ 𝑌 ) ∈ ( 𝐷 Func 𝐸 ) )
138 13 6 28 18 84 136 137 isnat2 ( 𝜑 → ( 𝐿 ∈ ( ( ( 1st𝐺 ) ‘ 𝑋 ) 𝑁 ( ( 1st𝐺 ) ‘ 𝑌 ) ) ↔ ( 𝐿X 𝑧𝐵 ( ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ) ∧ ∀ 𝑧𝐵𝑤𝐵𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑤 ) ( ( 𝐿𝑤 ) ( ⟨ ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑤 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) ( ( 𝑧 ( 2nd ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) 𝑤 ) ‘ 𝑓 ) ) = ( ( ( 𝑧 ( 2nd ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) 𝑤 ) ‘ 𝑓 ) ( ⟨ ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st𝐺 ) ‘ 𝑌 ) ) ‘ 𝑤 ) ) ( 𝐿𝑧 ) ) ) ) )
139 56 135 138 mpbir2and ( 𝜑𝐿 ∈ ( ( ( 1st𝐺 ) ‘ 𝑋 ) 𝑁 ( ( 1st𝐺 ) ‘ 𝑌 ) ) )