Step |
Hyp |
Ref |
Expression |
1 |
|
curf2.g |
|- G = ( <. C , D >. curryF F ) |
2 |
|
curf2.a |
|- A = ( Base ` C ) |
3 |
|
curf2.c |
|- ( ph -> C e. Cat ) |
4 |
|
curf2.d |
|- ( ph -> D e. Cat ) |
5 |
|
curf2.f |
|- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
6 |
|
curf2.b |
|- B = ( Base ` D ) |
7 |
|
curf2.h |
|- H = ( Hom ` C ) |
8 |
|
curf2.i |
|- I = ( Id ` D ) |
9 |
|
curf2.x |
|- ( ph -> X e. A ) |
10 |
|
curf2.y |
|- ( ph -> Y e. A ) |
11 |
|
curf2.k |
|- ( ph -> K e. ( X H Y ) ) |
12 |
|
curf2.l |
|- L = ( ( X ( 2nd ` G ) Y ) ` K ) |
13 |
|
curf2.n |
|- N = ( D Nat E ) |
14 |
1 2 3 4 5 6 7 8 9 10 11 12
|
curf2 |
|- ( ph -> L = ( z e. B |-> ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) ) ) |
15 |
|
eqid |
|- ( C Xc. D ) = ( C Xc. D ) |
16 |
15 2 6
|
xpcbas |
|- ( A X. B ) = ( Base ` ( C Xc. D ) ) |
17 |
|
eqid |
|- ( Hom ` ( C Xc. D ) ) = ( Hom ` ( C Xc. D ) ) |
18 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
19 |
|
relfunc |
|- Rel ( ( C Xc. D ) Func E ) |
20 |
|
1st2ndbr |
|- ( ( Rel ( ( C Xc. D ) Func E ) /\ F e. ( ( C Xc. D ) Func E ) ) -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
21 |
19 5 20
|
sylancr |
|- ( ph -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
22 |
21
|
adantr |
|- ( ( ph /\ z e. B ) -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
23 |
|
opelxpi |
|- ( ( X e. A /\ z e. B ) -> <. X , z >. e. ( A X. B ) ) |
24 |
9 23
|
sylan |
|- ( ( ph /\ z e. B ) -> <. X , z >. e. ( A X. B ) ) |
25 |
|
opelxpi |
|- ( ( Y e. A /\ z e. B ) -> <. Y , z >. e. ( A X. B ) ) |
26 |
10 25
|
sylan |
|- ( ( ph /\ z e. B ) -> <. Y , z >. e. ( A X. B ) ) |
27 |
16 17 18 22 24 26
|
funcf2 |
|- ( ( ph /\ z e. B ) -> ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) : ( <. X , z >. ( Hom ` ( C Xc. D ) ) <. Y , z >. ) --> ( ( ( 1st ` F ) ` <. X , z >. ) ( Hom ` E ) ( ( 1st ` F ) ` <. Y , z >. ) ) ) |
28 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
29 |
9
|
adantr |
|- ( ( ph /\ z e. B ) -> X e. A ) |
30 |
|
simpr |
|- ( ( ph /\ z e. B ) -> z e. B ) |
31 |
10
|
adantr |
|- ( ( ph /\ z e. B ) -> Y e. A ) |
32 |
15 2 6 7 28 29 30 31 30 17
|
xpchom2 |
|- ( ( ph /\ z e. B ) -> ( <. X , z >. ( Hom ` ( C Xc. D ) ) <. Y , z >. ) = ( ( X H Y ) X. ( z ( Hom ` D ) z ) ) ) |
33 |
32
|
feq2d |
|- ( ( ph /\ z e. B ) -> ( ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) : ( <. X , z >. ( Hom ` ( C Xc. D ) ) <. Y , z >. ) --> ( ( ( 1st ` F ) ` <. X , z >. ) ( Hom ` E ) ( ( 1st ` F ) ` <. Y , z >. ) ) <-> ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) : ( ( X H Y ) X. ( z ( Hom ` D ) z ) ) --> ( ( ( 1st ` F ) ` <. X , z >. ) ( Hom ` E ) ( ( 1st ` F ) ` <. Y , z >. ) ) ) ) |
34 |
27 33
|
mpbid |
|- ( ( ph /\ z e. B ) -> ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) : ( ( X H Y ) X. ( z ( Hom ` D ) z ) ) --> ( ( ( 1st ` F ) ` <. X , z >. ) ( Hom ` E ) ( ( 1st ` F ) ` <. Y , z >. ) ) ) |
35 |
11
|
adantr |
|- ( ( ph /\ z e. B ) -> K e. ( X H Y ) ) |
36 |
4
|
adantr |
|- ( ( ph /\ z e. B ) -> D e. Cat ) |
37 |
6 28 8 36 30
|
catidcl |
|- ( ( ph /\ z e. B ) -> ( I ` z ) e. ( z ( Hom ` D ) z ) ) |
38 |
34 35 37
|
fovrnd |
|- ( ( ph /\ z e. B ) -> ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) e. ( ( ( 1st ` F ) ` <. X , z >. ) ( Hom ` E ) ( ( 1st ` F ) ` <. Y , z >. ) ) ) |
39 |
3
|
adantr |
|- ( ( ph /\ z e. B ) -> C e. Cat ) |
40 |
5
|
adantr |
|- ( ( ph /\ z e. B ) -> F e. ( ( C Xc. D ) Func E ) ) |
41 |
|
eqid |
|- ( ( 1st ` G ) ` X ) = ( ( 1st ` G ) ` X ) |
42 |
1 2 39 36 40 6 29 41 30
|
curf11 |
|- ( ( ph /\ z e. B ) -> ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) = ( X ( 1st ` F ) z ) ) |
43 |
|
df-ov |
|- ( X ( 1st ` F ) z ) = ( ( 1st ` F ) ` <. X , z >. ) |
44 |
42 43
|
eqtrdi |
|- ( ( ph /\ z e. B ) -> ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) = ( ( 1st ` F ) ` <. X , z >. ) ) |
45 |
|
eqid |
|- ( ( 1st ` G ) ` Y ) = ( ( 1st ` G ) ` Y ) |
46 |
1 2 39 36 40 6 31 45 30
|
curf11 |
|- ( ( ph /\ z e. B ) -> ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) = ( Y ( 1st ` F ) z ) ) |
47 |
|
df-ov |
|- ( Y ( 1st ` F ) z ) = ( ( 1st ` F ) ` <. Y , z >. ) |
48 |
46 47
|
eqtrdi |
|- ( ( ph /\ z e. B ) -> ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) = ( ( 1st ` F ) ` <. Y , z >. ) ) |
49 |
44 48
|
oveq12d |
|- ( ( ph /\ z e. B ) -> ( ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) ( Hom ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) ) = ( ( ( 1st ` F ) ` <. X , z >. ) ( Hom ` E ) ( ( 1st ` F ) ` <. Y , z >. ) ) ) |
50 |
38 49
|
eleqtrrd |
|- ( ( ph /\ z e. B ) -> ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) e. ( ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) ( Hom ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) ) ) |
51 |
50
|
ralrimiva |
|- ( ph -> A. z e. B ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) e. ( ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) ( Hom ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) ) ) |
52 |
6
|
fvexi |
|- B e. _V |
53 |
|
mptelixpg |
|- ( B e. _V -> ( ( z e. B |-> ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) ) e. X_ z e. B ( ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) ( Hom ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) ) <-> A. z e. B ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) e. ( ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) ( Hom ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) ) ) ) |
54 |
52 53
|
ax-mp |
|- ( ( z e. B |-> ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) ) e. X_ z e. B ( ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) ( Hom ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) ) <-> A. z e. B ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) e. ( ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) ( Hom ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) ) ) |
55 |
51 54
|
sylibr |
|- ( ph -> ( z e. B |-> ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) ) e. X_ z e. B ( ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) ( Hom ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) ) ) |
56 |
14 55
|
eqeltrd |
|- ( ph -> L e. X_ z e. B ( ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) ( Hom ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) ) ) |
57 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
58 |
3
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> C e. Cat ) |
59 |
9
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> X e. A ) |
60 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
61 |
10
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> Y e. A ) |
62 |
11
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> K e. ( X H Y ) ) |
63 |
2 7 57 58 59 60 61 62
|
catrid |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( K ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) = K ) |
64 |
2 7 57 58 59 60 61 62
|
catlid |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) K ) = K ) |
65 |
63 64
|
eqtr4d |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( K ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) = ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) K ) ) |
66 |
4
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> D e. Cat ) |
67 |
|
simpr1 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> z e. B ) |
68 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
69 |
|
simpr2 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> w e. B ) |
70 |
|
simpr3 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> f e. ( z ( Hom ` D ) w ) ) |
71 |
6 28 8 66 67 68 69 70
|
catlid |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( I ` w ) ( <. z , w >. ( comp ` D ) w ) f ) = f ) |
72 |
6 28 8 66 67 68 69 70
|
catrid |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( f ( <. z , z >. ( comp ` D ) w ) ( I ` z ) ) = f ) |
73 |
71 72
|
eqtr4d |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( I ` w ) ( <. z , w >. ( comp ` D ) w ) f ) = ( f ( <. z , z >. ( comp ` D ) w ) ( I ` z ) ) ) |
74 |
65 73
|
opeq12d |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. ( K ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) , ( ( I ` w ) ( <. z , w >. ( comp ` D ) w ) f ) >. = <. ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) K ) , ( f ( <. z , z >. ( comp ` D ) w ) ( I ` z ) ) >. ) |
75 |
|
eqid |
|- ( comp ` ( C Xc. D ) ) = ( comp ` ( C Xc. D ) ) |
76 |
2 7 57 58 59
|
catidcl |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( Id ` C ) ` X ) e. ( X H X ) ) |
77 |
6 28 8 66 69
|
catidcl |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( I ` w ) e. ( w ( Hom ` D ) w ) ) |
78 |
15 2 6 7 28 59 67 59 69 60 68 75 61 69 76 70 62 77
|
xpcco2 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( <. K , ( I ` w ) >. ( <. <. X , z >. , <. X , w >. >. ( comp ` ( C Xc. D ) ) <. Y , w >. ) <. ( ( Id ` C ) ` X ) , f >. ) = <. ( K ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) , ( ( I ` w ) ( <. z , w >. ( comp ` D ) w ) f ) >. ) |
79 |
37
|
3ad2antr1 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( I ` z ) e. ( z ( Hom ` D ) z ) ) |
80 |
2 7 57 58 61
|
catidcl |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( Id ` C ) ` Y ) e. ( Y H Y ) ) |
81 |
15 2 6 7 28 59 67 61 67 60 68 75 61 69 62 79 80 70
|
xpcco2 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( <. ( ( Id ` C ) ` Y ) , f >. ( <. <. X , z >. , <. Y , z >. >. ( comp ` ( C Xc. D ) ) <. Y , w >. ) <. K , ( I ` z ) >. ) = <. ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) K ) , ( f ( <. z , z >. ( comp ` D ) w ) ( I ` z ) ) >. ) |
82 |
74 78 81
|
3eqtr4d |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( <. K , ( I ` w ) >. ( <. <. X , z >. , <. X , w >. >. ( comp ` ( C Xc. D ) ) <. Y , w >. ) <. ( ( Id ` C ) ` X ) , f >. ) = ( <. ( ( Id ` C ) ` Y ) , f >. ( <. <. X , z >. , <. Y , z >. >. ( comp ` ( C Xc. D ) ) <. Y , w >. ) <. K , ( I ` z ) >. ) ) |
83 |
82
|
fveq2d |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( <. X , z >. ( 2nd ` F ) <. Y , w >. ) ` ( <. K , ( I ` w ) >. ( <. <. X , z >. , <. X , w >. >. ( comp ` ( C Xc. D ) ) <. Y , w >. ) <. ( ( Id ` C ) ` X ) , f >. ) ) = ( ( <. X , z >. ( 2nd ` F ) <. Y , w >. ) ` ( <. ( ( Id ` C ) ` Y ) , f >. ( <. <. X , z >. , <. Y , z >. >. ( comp ` ( C Xc. D ) ) <. Y , w >. ) <. K , ( I ` z ) >. ) ) ) |
84 |
|
eqid |
|- ( comp ` E ) = ( comp ` E ) |
85 |
21
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
86 |
24
|
3ad2antr1 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. X , z >. e. ( A X. B ) ) |
87 |
59 69
|
opelxpd |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. X , w >. e. ( A X. B ) ) |
88 |
61 69
|
opelxpd |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. Y , w >. e. ( A X. B ) ) |
89 |
76 70
|
opelxpd |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. ( ( Id ` C ) ` X ) , f >. e. ( ( X H X ) X. ( z ( Hom ` D ) w ) ) ) |
90 |
15 2 6 7 28 59 67 59 69 17
|
xpchom2 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( <. X , z >. ( Hom ` ( C Xc. D ) ) <. X , w >. ) = ( ( X H X ) X. ( z ( Hom ` D ) w ) ) ) |
91 |
89 90
|
eleqtrrd |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. ( ( Id ` C ) ` X ) , f >. e. ( <. X , z >. ( Hom ` ( C Xc. D ) ) <. X , w >. ) ) |
92 |
62 77
|
opelxpd |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. K , ( I ` w ) >. e. ( ( X H Y ) X. ( w ( Hom ` D ) w ) ) ) |
93 |
15 2 6 7 28 59 69 61 69 17
|
xpchom2 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( <. X , w >. ( Hom ` ( C Xc. D ) ) <. Y , w >. ) = ( ( X H Y ) X. ( w ( Hom ` D ) w ) ) ) |
94 |
92 93
|
eleqtrrd |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. K , ( I ` w ) >. e. ( <. X , w >. ( Hom ` ( C Xc. D ) ) <. Y , w >. ) ) |
95 |
16 17 75 84 85 86 87 88 91 94
|
funcco |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( <. X , z >. ( 2nd ` F ) <. Y , w >. ) ` ( <. K , ( I ` w ) >. ( <. <. X , z >. , <. X , w >. >. ( comp ` ( C Xc. D ) ) <. Y , w >. ) <. ( ( Id ` C ) ` X ) , f >. ) ) = ( ( ( <. X , w >. ( 2nd ` F ) <. Y , w >. ) ` <. K , ( I ` w ) >. ) ( <. ( ( 1st ` F ) ` <. X , z >. ) , ( ( 1st ` F ) ` <. X , w >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. Y , w >. ) ) ( ( <. X , z >. ( 2nd ` F ) <. X , w >. ) ` <. ( ( Id ` C ) ` X ) , f >. ) ) ) |
96 |
26
|
3ad2antr1 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. Y , z >. e. ( A X. B ) ) |
97 |
62 79
|
opelxpd |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. K , ( I ` z ) >. e. ( ( X H Y ) X. ( z ( Hom ` D ) z ) ) ) |
98 |
15 2 6 7 28 59 67 61 67 17
|
xpchom2 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( <. X , z >. ( Hom ` ( C Xc. D ) ) <. Y , z >. ) = ( ( X H Y ) X. ( z ( Hom ` D ) z ) ) ) |
99 |
97 98
|
eleqtrrd |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. K , ( I ` z ) >. e. ( <. X , z >. ( Hom ` ( C Xc. D ) ) <. Y , z >. ) ) |
100 |
80 70
|
opelxpd |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. ( ( Id ` C ) ` Y ) , f >. e. ( ( Y H Y ) X. ( z ( Hom ` D ) w ) ) ) |
101 |
15 2 6 7 28 61 67 61 69 17
|
xpchom2 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( <. Y , z >. ( Hom ` ( C Xc. D ) ) <. Y , w >. ) = ( ( Y H Y ) X. ( z ( Hom ` D ) w ) ) ) |
102 |
100 101
|
eleqtrrd |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. ( ( Id ` C ) ` Y ) , f >. e. ( <. Y , z >. ( Hom ` ( C Xc. D ) ) <. Y , w >. ) ) |
103 |
16 17 75 84 85 86 96 88 99 102
|
funcco |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( <. X , z >. ( 2nd ` F ) <. Y , w >. ) ` ( <. ( ( Id ` C ) ` Y ) , f >. ( <. <. X , z >. , <. Y , z >. >. ( comp ` ( C Xc. D ) ) <. Y , w >. ) <. K , ( I ` z ) >. ) ) = ( ( ( <. Y , z >. ( 2nd ` F ) <. Y , w >. ) ` <. ( ( Id ` C ) ` Y ) , f >. ) ( <. ( ( 1st ` F ) ` <. X , z >. ) , ( ( 1st ` F ) ` <. Y , z >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. Y , w >. ) ) ( ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ` <. K , ( I ` z ) >. ) ) ) |
104 |
83 95 103
|
3eqtr3d |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( ( <. X , w >. ( 2nd ` F ) <. Y , w >. ) ` <. K , ( I ` w ) >. ) ( <. ( ( 1st ` F ) ` <. X , z >. ) , ( ( 1st ` F ) ` <. X , w >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. Y , w >. ) ) ( ( <. X , z >. ( 2nd ` F ) <. X , w >. ) ` <. ( ( Id ` C ) ` X ) , f >. ) ) = ( ( ( <. Y , z >. ( 2nd ` F ) <. Y , w >. ) ` <. ( ( Id ` C ) ` Y ) , f >. ) ( <. ( ( 1st ` F ) ` <. X , z >. ) , ( ( 1st ` F ) ` <. Y , z >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. Y , w >. ) ) ( ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ` <. K , ( I ` z ) >. ) ) ) |
105 |
5
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> F e. ( ( C Xc. D ) Func E ) ) |
106 |
1 2 58 66 105 6 59 41 67
|
curf11 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) = ( X ( 1st ` F ) z ) ) |
107 |
106 43
|
eqtrdi |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) = ( ( 1st ` F ) ` <. X , z >. ) ) |
108 |
1 2 58 66 105 6 59 41 69
|
curf11 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` w ) = ( X ( 1st ` F ) w ) ) |
109 |
|
df-ov |
|- ( X ( 1st ` F ) w ) = ( ( 1st ` F ) ` <. X , w >. ) |
110 |
108 109
|
eqtrdi |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` w ) = ( ( 1st ` F ) ` <. X , w >. ) ) |
111 |
107 110
|
opeq12d |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` w ) >. = <. ( ( 1st ` F ) ` <. X , z >. ) , ( ( 1st ` F ) ` <. X , w >. ) >. ) |
112 |
1 2 58 66 105 6 61 45 69
|
curf11 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` w ) = ( Y ( 1st ` F ) w ) ) |
113 |
|
df-ov |
|- ( Y ( 1st ` F ) w ) = ( ( 1st ` F ) ` <. Y , w >. ) |
114 |
112 113
|
eqtrdi |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` w ) = ( ( 1st ` F ) ` <. Y , w >. ) ) |
115 |
111 114
|
oveq12d |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` w ) ) = ( <. ( ( 1st ` F ) ` <. X , z >. ) , ( ( 1st ` F ) ` <. X , w >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. Y , w >. ) ) ) |
116 |
1 2 58 66 105 6 7 8 59 61 62 12 69
|
curf2val |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( L ` w ) = ( K ( <. X , w >. ( 2nd ` F ) <. Y , w >. ) ( I ` w ) ) ) |
117 |
|
df-ov |
|- ( K ( <. X , w >. ( 2nd ` F ) <. Y , w >. ) ( I ` w ) ) = ( ( <. X , w >. ( 2nd ` F ) <. Y , w >. ) ` <. K , ( I ` w ) >. ) |
118 |
116 117
|
eqtrdi |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( L ` w ) = ( ( <. X , w >. ( 2nd ` F ) <. Y , w >. ) ` <. K , ( I ` w ) >. ) ) |
119 |
1 2 58 66 105 6 59 41 67 28 57 69 70
|
curf12 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( z ( 2nd ` ( ( 1st ` G ) ` X ) ) w ) ` f ) = ( ( ( Id ` C ) ` X ) ( <. X , z >. ( 2nd ` F ) <. X , w >. ) f ) ) |
120 |
|
df-ov |
|- ( ( ( Id ` C ) ` X ) ( <. X , z >. ( 2nd ` F ) <. X , w >. ) f ) = ( ( <. X , z >. ( 2nd ` F ) <. X , w >. ) ` <. ( ( Id ` C ) ` X ) , f >. ) |
121 |
119 120
|
eqtrdi |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( z ( 2nd ` ( ( 1st ` G ) ` X ) ) w ) ` f ) = ( ( <. X , z >. ( 2nd ` F ) <. X , w >. ) ` <. ( ( Id ` C ) ` X ) , f >. ) ) |
122 |
115 118 121
|
oveq123d |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( L ` w ) ( <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` w ) ) ( ( z ( 2nd ` ( ( 1st ` G ) ` X ) ) w ) ` f ) ) = ( ( ( <. X , w >. ( 2nd ` F ) <. Y , w >. ) ` <. K , ( I ` w ) >. ) ( <. ( ( 1st ` F ) ` <. X , z >. ) , ( ( 1st ` F ) ` <. X , w >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. Y , w >. ) ) ( ( <. X , z >. ( 2nd ` F ) <. X , w >. ) ` <. ( ( Id ` C ) ` X ) , f >. ) ) ) |
123 |
1 2 58 66 105 6 61 45 67
|
curf11 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) = ( Y ( 1st ` F ) z ) ) |
124 |
123 47
|
eqtrdi |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) = ( ( 1st ` F ) ` <. Y , z >. ) ) |
125 |
107 124
|
opeq12d |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) >. = <. ( ( 1st ` F ) ` <. X , z >. ) , ( ( 1st ` F ) ` <. Y , z >. ) >. ) |
126 |
125 114
|
oveq12d |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` w ) ) = ( <. ( ( 1st ` F ) ` <. X , z >. ) , ( ( 1st ` F ) ` <. Y , z >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. Y , w >. ) ) ) |
127 |
1 2 58 66 105 6 61 45 67 28 57 69 70
|
curf12 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( z ( 2nd ` ( ( 1st ` G ) ` Y ) ) w ) ` f ) = ( ( ( Id ` C ) ` Y ) ( <. Y , z >. ( 2nd ` F ) <. Y , w >. ) f ) ) |
128 |
|
df-ov |
|- ( ( ( Id ` C ) ` Y ) ( <. Y , z >. ( 2nd ` F ) <. Y , w >. ) f ) = ( ( <. Y , z >. ( 2nd ` F ) <. Y , w >. ) ` <. ( ( Id ` C ) ` Y ) , f >. ) |
129 |
127 128
|
eqtrdi |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( z ( 2nd ` ( ( 1st ` G ) ` Y ) ) w ) ` f ) = ( ( <. Y , z >. ( 2nd ` F ) <. Y , w >. ) ` <. ( ( Id ` C ) ` Y ) , f >. ) ) |
130 |
1 2 58 66 105 6 7 8 59 61 62 12 67
|
curf2val |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( L ` z ) = ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) ) |
131 |
|
df-ov |
|- ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) = ( ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ` <. K , ( I ` z ) >. ) |
132 |
130 131
|
eqtrdi |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( L ` z ) = ( ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ` <. K , ( I ` z ) >. ) ) |
133 |
126 129 132
|
oveq123d |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( ( z ( 2nd ` ( ( 1st ` G ) ` Y ) ) w ) ` f ) ( <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` w ) ) ( L ` z ) ) = ( ( ( <. Y , z >. ( 2nd ` F ) <. Y , w >. ) ` <. ( ( Id ` C ) ` Y ) , f >. ) ( <. ( ( 1st ` F ) ` <. X , z >. ) , ( ( 1st ` F ) ` <. Y , z >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. Y , w >. ) ) ( ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ` <. K , ( I ` z ) >. ) ) ) |
134 |
104 122 133
|
3eqtr4d |
|- ( ( ph /\ ( z e. B /\ w e. B /\ f e. ( z ( Hom ` D ) w ) ) ) -> ( ( L ` w ) ( <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` w ) ) ( ( z ( 2nd ` ( ( 1st ` G ) ` X ) ) w ) ` f ) ) = ( ( ( z ( 2nd ` ( ( 1st ` G ) ` Y ) ) w ) ` f ) ( <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` w ) ) ( L ` z ) ) ) |
135 |
134
|
ralrimivvva |
|- ( ph -> A. z e. B A. w e. B A. f e. ( z ( Hom ` D ) w ) ( ( L ` w ) ( <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` w ) ) ( ( z ( 2nd ` ( ( 1st ` G ) ` X ) ) w ) ` f ) ) = ( ( ( z ( 2nd ` ( ( 1st ` G ) ` Y ) ) w ) ` f ) ( <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` w ) ) ( L ` z ) ) ) |
136 |
1 2 3 4 5 6 9 41
|
curf1cl |
|- ( ph -> ( ( 1st ` G ) ` X ) e. ( D Func E ) ) |
137 |
1 2 3 4 5 6 10 45
|
curf1cl |
|- ( ph -> ( ( 1st ` G ) ` Y ) e. ( D Func E ) ) |
138 |
13 6 28 18 84 136 137
|
isnat2 |
|- ( ph -> ( L e. ( ( ( 1st ` G ) ` X ) N ( ( 1st ` G ) ` Y ) ) <-> ( L e. X_ z e. B ( ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) ( Hom ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) ) /\ A. z e. B A. w e. B A. f e. ( z ( Hom ` D ) w ) ( ( L ` w ) ( <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` w ) ) ( ( z ( 2nd ` ( ( 1st ` G ) ` X ) ) w ) ` f ) ) = ( ( ( z ( 2nd ` ( ( 1st ` G ) ` Y ) ) w ) ` f ) ( <. ( ( 1st ` ( ( 1st ` G ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` z ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` Y ) ) ` w ) ) ( L ` z ) ) ) ) ) |
139 |
56 135 138
|
mpbir2and |
|- ( ph -> L e. ( ( ( 1st ` G ) ` X ) N ( ( 1st ` G ) ` Y ) ) ) |