| Step |
Hyp |
Ref |
Expression |
| 1 |
|
curfcl.g |
|- G = ( <. C , D >. curryF F ) |
| 2 |
|
curfcl.q |
|- Q = ( D FuncCat E ) |
| 3 |
|
curfcl.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
curfcl.d |
|- ( ph -> D e. Cat ) |
| 5 |
|
curfcl.f |
|- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
| 6 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 7 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 8 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 9 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
| 10 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 11 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
| 12 |
1 6 3 4 5 7 8 9 10 11
|
curfval |
|- ( ph -> G = <. ( x e. ( Base ` C ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) >. ) |
| 13 |
|
fvex |
|- ( Base ` C ) e. _V |
| 14 |
13
|
mptex |
|- ( x e. ( Base ` C ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) e. _V |
| 15 |
13 13
|
mpoex |
|- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) e. _V |
| 16 |
14 15
|
op1std |
|- ( G = <. ( x e. ( Base ` C ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) >. -> ( 1st ` G ) = ( x e. ( Base ` C ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) ) |
| 17 |
12 16
|
syl |
|- ( ph -> ( 1st ` G ) = ( x e. ( Base ` C ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) ) |
| 18 |
14 15
|
op2ndd |
|- ( G = <. ( x e. ( Base ` C ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) >. -> ( 2nd ` G ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) ) |
| 19 |
12 18
|
syl |
|- ( ph -> ( 2nd ` G ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) ) |
| 20 |
17 19
|
opeq12d |
|- ( ph -> <. ( 1st ` G ) , ( 2nd ` G ) >. = <. ( x e. ( Base ` C ) |-> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) >. ) |
| 21 |
12 20
|
eqtr4d |
|- ( ph -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
| 22 |
2
|
fucbas |
|- ( D Func E ) = ( Base ` Q ) |
| 23 |
|
eqid |
|- ( D Nat E ) = ( D Nat E ) |
| 24 |
2 23
|
fuchom |
|- ( D Nat E ) = ( Hom ` Q ) |
| 25 |
|
eqid |
|- ( Id ` Q ) = ( Id ` Q ) |
| 26 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 27 |
|
eqid |
|- ( comp ` Q ) = ( comp ` Q ) |
| 28 |
|
funcrcl |
|- ( F e. ( ( C Xc. D ) Func E ) -> ( ( C Xc. D ) e. Cat /\ E e. Cat ) ) |
| 29 |
5 28
|
syl |
|- ( ph -> ( ( C Xc. D ) e. Cat /\ E e. Cat ) ) |
| 30 |
29
|
simprd |
|- ( ph -> E e. Cat ) |
| 31 |
2 4 30
|
fuccat |
|- ( ph -> Q e. Cat ) |
| 32 |
|
opex |
|- <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. e. _V |
| 33 |
32
|
a1i |
|- ( ( ph /\ x e. ( Base ` C ) ) -> <. ( y e. ( Base ` D ) |-> ( x ( 1st ` F ) y ) ) , ( y e. ( Base ` D ) , z e. ( Base ` D ) |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. e. _V ) |
| 34 |
3
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> C e. Cat ) |
| 35 |
4
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> D e. Cat ) |
| 36 |
5
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> F e. ( ( C Xc. D ) Func E ) ) |
| 37 |
|
simpr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
| 38 |
|
eqid |
|- ( ( 1st ` G ) ` x ) = ( ( 1st ` G ) ` x ) |
| 39 |
1 6 34 35 36 7 37 38
|
curf1cl |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` G ) ` x ) e. ( D Func E ) ) |
| 40 |
33 17 39
|
fmpt2d |
|- ( ph -> ( 1st ` G ) : ( Base ` C ) --> ( D Func E ) ) |
| 41 |
|
eqid |
|- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) |
| 42 |
|
ovex |
|- ( x ( Hom ` C ) y ) e. _V |
| 43 |
42
|
mptex |
|- ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) e. _V |
| 44 |
41 43
|
fnmpoi |
|- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) |
| 45 |
19
|
fneq1d |
|- ( ph -> ( ( 2nd ` G ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
| 46 |
44 45
|
mpbiri |
|- ( ph -> ( 2nd ` G ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 47 |
|
fvex |
|- ( Base ` D ) e. _V |
| 48 |
47
|
mptex |
|- ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) e. _V |
| 49 |
48
|
a1i |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) e. _V ) |
| 50 |
19
|
oveqd |
|- ( ph -> ( x ( 2nd ` G ) y ) = ( x ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) y ) ) |
| 51 |
41
|
ovmpt4g |
|- ( ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) e. _V ) -> ( x ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) y ) = ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) |
| 52 |
43 51
|
mp3an3 |
|- ( ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( x ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) y ) = ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) |
| 53 |
50 52
|
sylan9eq |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` G ) y ) = ( g e. ( x ( Hom ` C ) y ) |-> ( z e. ( Base ` D ) |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( ( Id ` D ) ` z ) ) ) ) ) |
| 54 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> C e. Cat ) |
| 55 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> D e. Cat ) |
| 56 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> F e. ( ( C Xc. D ) Func E ) ) |
| 57 |
|
simplrl |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> x e. ( Base ` C ) ) |
| 58 |
|
simplrr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> y e. ( Base ` C ) ) |
| 59 |
|
simpr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> g e. ( x ( Hom ` C ) y ) ) |
| 60 |
|
eqid |
|- ( ( x ( 2nd ` G ) y ) ` g ) = ( ( x ( 2nd ` G ) y ) ` g ) |
| 61 |
1 6 54 55 56 7 10 11 57 58 59 60 23
|
curf2cl |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ g e. ( x ( Hom ` C ) y ) ) -> ( ( x ( 2nd ` G ) y ) ` g ) e. ( ( ( 1st ` G ) ` x ) ( D Nat E ) ( ( 1st ` G ) ` y ) ) ) |
| 62 |
49 53 61
|
fmpt2d |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` G ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` G ) ` x ) ( D Nat E ) ( ( 1st ` G ) ` y ) ) ) |
| 63 |
|
eqid |
|- ( C Xc. D ) = ( C Xc. D ) |
| 64 |
63 6 7
|
xpcbas |
|- ( ( Base ` C ) X. ( Base ` D ) ) = ( Base ` ( C Xc. D ) ) |
| 65 |
|
eqid |
|- ( Id ` ( C Xc. D ) ) = ( Id ` ( C Xc. D ) ) |
| 66 |
|
eqid |
|- ( Id ` E ) = ( Id ` E ) |
| 67 |
|
relfunc |
|- Rel ( ( C Xc. D ) Func E ) |
| 68 |
|
1st2ndbr |
|- ( ( Rel ( ( C Xc. D ) Func E ) /\ F e. ( ( C Xc. D ) Func E ) ) -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
| 69 |
67 5 68
|
sylancr |
|- ( ph -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
| 70 |
69
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
| 71 |
|
opelxpi |
|- ( ( x e. ( Base ` C ) /\ y e. ( Base ` D ) ) -> <. x , y >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 72 |
71
|
adantll |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> <. x , y >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 73 |
64 65 66 70 72
|
funcid |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> ( ( <. x , y >. ( 2nd ` F ) <. x , y >. ) ` ( ( Id ` ( C Xc. D ) ) ` <. x , y >. ) ) = ( ( Id ` E ) ` ( ( 1st ` F ) ` <. x , y >. ) ) ) |
| 74 |
3
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> C e. Cat ) |
| 75 |
4
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> D e. Cat ) |
| 76 |
37
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> x e. ( Base ` C ) ) |
| 77 |
|
simpr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> y e. ( Base ` D ) ) |
| 78 |
63 74 75 6 7 9 11 65 76 77
|
xpcid |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> ( ( Id ` ( C Xc. D ) ) ` <. x , y >. ) = <. ( ( Id ` C ) ` x ) , ( ( Id ` D ) ` y ) >. ) |
| 79 |
78
|
fveq2d |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> ( ( <. x , y >. ( 2nd ` F ) <. x , y >. ) ` ( ( Id ` ( C Xc. D ) ) ` <. x , y >. ) ) = ( ( <. x , y >. ( 2nd ` F ) <. x , y >. ) ` <. ( ( Id ` C ) ` x ) , ( ( Id ` D ) ` y ) >. ) ) |
| 80 |
|
df-ov |
|- ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , y >. ) ( ( Id ` D ) ` y ) ) = ( ( <. x , y >. ( 2nd ` F ) <. x , y >. ) ` <. ( ( Id ` C ) ` x ) , ( ( Id ` D ) ` y ) >. ) |
| 81 |
79 80
|
eqtr4di |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> ( ( <. x , y >. ( 2nd ` F ) <. x , y >. ) ` ( ( Id ` ( C Xc. D ) ) ` <. x , y >. ) ) = ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , y >. ) ( ( Id ` D ) ` y ) ) ) |
| 82 |
5
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> F e. ( ( C Xc. D ) Func E ) ) |
| 83 |
1 6 74 75 82 7 76 38 77
|
curf11 |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) = ( x ( 1st ` F ) y ) ) |
| 84 |
|
df-ov |
|- ( x ( 1st ` F ) y ) = ( ( 1st ` F ) ` <. x , y >. ) |
| 85 |
83 84
|
eqtr2di |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> ( ( 1st ` F ) ` <. x , y >. ) = ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) ) |
| 86 |
85
|
fveq2d |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> ( ( Id ` E ) ` ( ( 1st ` F ) ` <. x , y >. ) ) = ( ( Id ` E ) ` ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) ) ) |
| 87 |
73 81 86
|
3eqtr3d |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ y e. ( Base ` D ) ) -> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , y >. ) ( ( Id ` D ) ` y ) ) = ( ( Id ` E ) ` ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) ) ) |
| 88 |
87
|
mpteq2dva |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( y e. ( Base ` D ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , y >. ) ( ( Id ` D ) ` y ) ) ) = ( y e. ( Base ` D ) |-> ( ( Id ` E ) ` ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) ) ) ) |
| 89 |
30
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> E e. Cat ) |
| 90 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 91 |
90 66
|
cidfn |
|- ( E e. Cat -> ( Id ` E ) Fn ( Base ` E ) ) |
| 92 |
89 91
|
syl |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( Id ` E ) Fn ( Base ` E ) ) |
| 93 |
|
dffn2 |
|- ( ( Id ` E ) Fn ( Base ` E ) <-> ( Id ` E ) : ( Base ` E ) --> _V ) |
| 94 |
92 93
|
sylib |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( Id ` E ) : ( Base ` E ) --> _V ) |
| 95 |
|
relfunc |
|- Rel ( D Func E ) |
| 96 |
|
1st2ndbr |
|- ( ( Rel ( D Func E ) /\ ( ( 1st ` G ) ` x ) e. ( D Func E ) ) -> ( 1st ` ( ( 1st ` G ) ` x ) ) ( D Func E ) ( 2nd ` ( ( 1st ` G ) ` x ) ) ) |
| 97 |
95 39 96
|
sylancr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( 1st ` ( ( 1st ` G ) ` x ) ) ( D Func E ) ( 2nd ` ( ( 1st ` G ) ` x ) ) ) |
| 98 |
7 90 97
|
funcf1 |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( 1st ` ( ( 1st ` G ) ` x ) ) : ( Base ` D ) --> ( Base ` E ) ) |
| 99 |
|
fcompt |
|- ( ( ( Id ` E ) : ( Base ` E ) --> _V /\ ( 1st ` ( ( 1st ` G ) ` x ) ) : ( Base ` D ) --> ( Base ` E ) ) -> ( ( Id ` E ) o. ( 1st ` ( ( 1st ` G ) ` x ) ) ) = ( y e. ( Base ` D ) |-> ( ( Id ` E ) ` ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) ) ) ) |
| 100 |
94 98 99
|
syl2anc |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( Id ` E ) o. ( 1st ` ( ( 1st ` G ) ` x ) ) ) = ( y e. ( Base ` D ) |-> ( ( Id ` E ) ` ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` y ) ) ) ) |
| 101 |
88 100
|
eqtr4d |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( y e. ( Base ` D ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , y >. ) ( ( Id ` D ) ` y ) ) ) = ( ( Id ` E ) o. ( 1st ` ( ( 1st ` G ) ` x ) ) ) ) |
| 102 |
6 10 9 34 37
|
catidcl |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( Id ` C ) ` x ) e. ( x ( Hom ` C ) x ) ) |
| 103 |
|
eqid |
|- ( ( x ( 2nd ` G ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( x ( 2nd ` G ) x ) ` ( ( Id ` C ) ` x ) ) |
| 104 |
1 6 34 35 36 7 10 11 37 37 102 103
|
curf2 |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( x ( 2nd ` G ) x ) ` ( ( Id ` C ) ` x ) ) = ( y e. ( Base ` D ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , y >. ) ( ( Id ` D ) ` y ) ) ) ) |
| 105 |
2 25 66 39
|
fucid |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( Id ` Q ) ` ( ( 1st ` G ) ` x ) ) = ( ( Id ` E ) o. ( 1st ` ( ( 1st ` G ) ` x ) ) ) ) |
| 106 |
101 104 105
|
3eqtr4d |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( x ( 2nd ` G ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` Q ) ` ( ( 1st ` G ) ` x ) ) ) |
| 107 |
3
|
3ad2ant1 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> C e. Cat ) |
| 108 |
107
|
adantr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> C e. Cat ) |
| 109 |
4
|
3ad2ant1 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> D e. Cat ) |
| 110 |
109
|
adantr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> D e. Cat ) |
| 111 |
5
|
3ad2ant1 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> F e. ( ( C Xc. D ) Func E ) ) |
| 112 |
111
|
adantr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> F e. ( ( C Xc. D ) Func E ) ) |
| 113 |
|
simp21 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> x e. ( Base ` C ) ) |
| 114 |
113
|
adantr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> x e. ( Base ` C ) ) |
| 115 |
|
simpr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> w e. ( Base ` D ) ) |
| 116 |
1 6 108 110 112 7 114 38 115
|
curf11 |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) = ( x ( 1st ` F ) w ) ) |
| 117 |
|
df-ov |
|- ( x ( 1st ` F ) w ) = ( ( 1st ` F ) ` <. x , w >. ) |
| 118 |
116 117
|
eqtrdi |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) = ( ( 1st ` F ) ` <. x , w >. ) ) |
| 119 |
|
simp22 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> y e. ( Base ` C ) ) |
| 120 |
119
|
adantr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> y e. ( Base ` C ) ) |
| 121 |
|
eqid |
|- ( ( 1st ` G ) ` y ) = ( ( 1st ` G ) ` y ) |
| 122 |
1 6 108 110 112 7 120 121 115
|
curf11 |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` w ) = ( y ( 1st ` F ) w ) ) |
| 123 |
|
df-ov |
|- ( y ( 1st ` F ) w ) = ( ( 1st ` F ) ` <. y , w >. ) |
| 124 |
122 123
|
eqtrdi |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` w ) = ( ( 1st ` F ) ` <. y , w >. ) ) |
| 125 |
118 124
|
opeq12d |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) , ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` w ) >. = <. ( ( 1st ` F ) ` <. x , w >. ) , ( ( 1st ` F ) ` <. y , w >. ) >. ) |
| 126 |
|
simp23 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> z e. ( Base ` C ) ) |
| 127 |
126
|
adantr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> z e. ( Base ` C ) ) |
| 128 |
|
eqid |
|- ( ( 1st ` G ) ` z ) = ( ( 1st ` G ) ` z ) |
| 129 |
1 6 108 110 112 7 127 128 115
|
curf11 |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( 1st ` ( ( 1st ` G ) ` z ) ) ` w ) = ( z ( 1st ` F ) w ) ) |
| 130 |
|
df-ov |
|- ( z ( 1st ` F ) w ) = ( ( 1st ` F ) ` <. z , w >. ) |
| 131 |
129 130
|
eqtrdi |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( 1st ` ( ( 1st ` G ) ` z ) ) ` w ) = ( ( 1st ` F ) ` <. z , w >. ) ) |
| 132 |
125 131
|
oveq12d |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) , ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` z ) ) ` w ) ) = ( <. ( ( 1st ` F ) ` <. x , w >. ) , ( ( 1st ` F ) ` <. y , w >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. z , w >. ) ) ) |
| 133 |
|
simp3r |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> g e. ( y ( Hom ` C ) z ) ) |
| 134 |
133
|
adantr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> g e. ( y ( Hom ` C ) z ) ) |
| 135 |
|
eqid |
|- ( ( y ( 2nd ` G ) z ) ` g ) = ( ( y ( 2nd ` G ) z ) ` g ) |
| 136 |
1 6 108 110 112 7 10 11 120 127 134 135 115
|
curf2val |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( ( y ( 2nd ` G ) z ) ` g ) ` w ) = ( g ( <. y , w >. ( 2nd ` F ) <. z , w >. ) ( ( Id ` D ) ` w ) ) ) |
| 137 |
|
df-ov |
|- ( g ( <. y , w >. ( 2nd ` F ) <. z , w >. ) ( ( Id ` D ) ` w ) ) = ( ( <. y , w >. ( 2nd ` F ) <. z , w >. ) ` <. g , ( ( Id ` D ) ` w ) >. ) |
| 138 |
136 137
|
eqtrdi |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( ( y ( 2nd ` G ) z ) ` g ) ` w ) = ( ( <. y , w >. ( 2nd ` F ) <. z , w >. ) ` <. g , ( ( Id ` D ) ` w ) >. ) ) |
| 139 |
|
simp3l |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> f e. ( x ( Hom ` C ) y ) ) |
| 140 |
139
|
adantr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> f e. ( x ( Hom ` C ) y ) ) |
| 141 |
|
eqid |
|- ( ( x ( 2nd ` G ) y ) ` f ) = ( ( x ( 2nd ` G ) y ) ` f ) |
| 142 |
1 6 108 110 112 7 10 11 114 120 140 141 115
|
curf2val |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( ( x ( 2nd ` G ) y ) ` f ) ` w ) = ( f ( <. x , w >. ( 2nd ` F ) <. y , w >. ) ( ( Id ` D ) ` w ) ) ) |
| 143 |
|
df-ov |
|- ( f ( <. x , w >. ( 2nd ` F ) <. y , w >. ) ( ( Id ` D ) ` w ) ) = ( ( <. x , w >. ( 2nd ` F ) <. y , w >. ) ` <. f , ( ( Id ` D ) ` w ) >. ) |
| 144 |
142 143
|
eqtrdi |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( ( x ( 2nd ` G ) y ) ` f ) ` w ) = ( ( <. x , w >. ( 2nd ` F ) <. y , w >. ) ` <. f , ( ( Id ` D ) ` w ) >. ) ) |
| 145 |
132 138 144
|
oveq123d |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( ( ( y ( 2nd ` G ) z ) ` g ) ` w ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) , ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` z ) ) ` w ) ) ( ( ( x ( 2nd ` G ) y ) ` f ) ` w ) ) = ( ( ( <. y , w >. ( 2nd ` F ) <. z , w >. ) ` <. g , ( ( Id ` D ) ` w ) >. ) ( <. ( ( 1st ` F ) ` <. x , w >. ) , ( ( 1st ` F ) ` <. y , w >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. z , w >. ) ) ( ( <. x , w >. ( 2nd ` F ) <. y , w >. ) ` <. f , ( ( Id ` D ) ` w ) >. ) ) ) |
| 146 |
|
eqid |
|- ( Hom ` ( C Xc. D ) ) = ( Hom ` ( C Xc. D ) ) |
| 147 |
|
eqid |
|- ( comp ` ( C Xc. D ) ) = ( comp ` ( C Xc. D ) ) |
| 148 |
|
eqid |
|- ( comp ` E ) = ( comp ` E ) |
| 149 |
67 112 68
|
sylancr |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
| 150 |
|
opelxpi |
|- ( ( x e. ( Base ` C ) /\ w e. ( Base ` D ) ) -> <. x , w >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 151 |
113 150
|
sylan |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> <. x , w >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 152 |
|
opelxpi |
|- ( ( y e. ( Base ` C ) /\ w e. ( Base ` D ) ) -> <. y , w >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 153 |
119 152
|
sylan |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> <. y , w >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 154 |
|
opelxpi |
|- ( ( z e. ( Base ` C ) /\ w e. ( Base ` D ) ) -> <. z , w >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 155 |
126 154
|
sylan |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> <. z , w >. e. ( ( Base ` C ) X. ( Base ` D ) ) ) |
| 156 |
7 8 11 110 115
|
catidcl |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( Id ` D ) ` w ) e. ( w ( Hom ` D ) w ) ) |
| 157 |
140 156
|
opelxpd |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> <. f , ( ( Id ` D ) ` w ) >. e. ( ( x ( Hom ` C ) y ) X. ( w ( Hom ` D ) w ) ) ) |
| 158 |
63 6 7 10 8 114 115 120 115 146
|
xpchom2 |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( <. x , w >. ( Hom ` ( C Xc. D ) ) <. y , w >. ) = ( ( x ( Hom ` C ) y ) X. ( w ( Hom ` D ) w ) ) ) |
| 159 |
157 158
|
eleqtrrd |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> <. f , ( ( Id ` D ) ` w ) >. e. ( <. x , w >. ( Hom ` ( C Xc. D ) ) <. y , w >. ) ) |
| 160 |
134 156
|
opelxpd |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> <. g , ( ( Id ` D ) ` w ) >. e. ( ( y ( Hom ` C ) z ) X. ( w ( Hom ` D ) w ) ) ) |
| 161 |
63 6 7 10 8 120 115 127 115 146
|
xpchom2 |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( <. y , w >. ( Hom ` ( C Xc. D ) ) <. z , w >. ) = ( ( y ( Hom ` C ) z ) X. ( w ( Hom ` D ) w ) ) ) |
| 162 |
160 161
|
eleqtrrd |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> <. g , ( ( Id ` D ) ` w ) >. e. ( <. y , w >. ( Hom ` ( C Xc. D ) ) <. z , w >. ) ) |
| 163 |
64 146 147 148 149 151 153 155 159 162
|
funcco |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ` ( <. g , ( ( Id ` D ) ` w ) >. ( <. <. x , w >. , <. y , w >. >. ( comp ` ( C Xc. D ) ) <. z , w >. ) <. f , ( ( Id ` D ) ` w ) >. ) ) = ( ( ( <. y , w >. ( 2nd ` F ) <. z , w >. ) ` <. g , ( ( Id ` D ) ` w ) >. ) ( <. ( ( 1st ` F ) ` <. x , w >. ) , ( ( 1st ` F ) ` <. y , w >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. z , w >. ) ) ( ( <. x , w >. ( 2nd ` F ) <. y , w >. ) ` <. f , ( ( Id ` D ) ` w ) >. ) ) ) |
| 164 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
| 165 |
63 6 7 10 8 114 115 120 115 26 164 147 127 115 140 156 134 156
|
xpcco2 |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( <. g , ( ( Id ` D ) ` w ) >. ( <. <. x , w >. , <. y , w >. >. ( comp ` ( C Xc. D ) ) <. z , w >. ) <. f , ( ( Id ` D ) ` w ) >. ) = <. ( g ( <. x , y >. ( comp ` C ) z ) f ) , ( ( ( Id ` D ) ` w ) ( <. w , w >. ( comp ` D ) w ) ( ( Id ` D ) ` w ) ) >. ) |
| 166 |
7 8 11 110 115 164 115 156
|
catlid |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( ( Id ` D ) ` w ) ( <. w , w >. ( comp ` D ) w ) ( ( Id ` D ) ` w ) ) = ( ( Id ` D ) ` w ) ) |
| 167 |
166
|
opeq2d |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> <. ( g ( <. x , y >. ( comp ` C ) z ) f ) , ( ( ( Id ` D ) ` w ) ( <. w , w >. ( comp ` D ) w ) ( ( Id ` D ) ` w ) ) >. = <. ( g ( <. x , y >. ( comp ` C ) z ) f ) , ( ( Id ` D ) ` w ) >. ) |
| 168 |
165 167
|
eqtrd |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( <. g , ( ( Id ` D ) ` w ) >. ( <. <. x , w >. , <. y , w >. >. ( comp ` ( C Xc. D ) ) <. z , w >. ) <. f , ( ( Id ` D ) ` w ) >. ) = <. ( g ( <. x , y >. ( comp ` C ) z ) f ) , ( ( Id ` D ) ` w ) >. ) |
| 169 |
168
|
fveq2d |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ` ( <. g , ( ( Id ` D ) ` w ) >. ( <. <. x , w >. , <. y , w >. >. ( comp ` ( C Xc. D ) ) <. z , w >. ) <. f , ( ( Id ` D ) ` w ) >. ) ) = ( ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ` <. ( g ( <. x , y >. ( comp ` C ) z ) f ) , ( ( Id ` D ) ` w ) >. ) ) |
| 170 |
|
df-ov |
|- ( ( g ( <. x , y >. ( comp ` C ) z ) f ) ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ( ( Id ` D ) ` w ) ) = ( ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ` <. ( g ( <. x , y >. ( comp ` C ) z ) f ) , ( ( Id ` D ) ` w ) >. ) |
| 171 |
169 170
|
eqtr4di |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ` ( <. g , ( ( Id ` D ) ` w ) >. ( <. <. x , w >. , <. y , w >. >. ( comp ` ( C Xc. D ) ) <. z , w >. ) <. f , ( ( Id ` D ) ` w ) >. ) ) = ( ( g ( <. x , y >. ( comp ` C ) z ) f ) ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ( ( Id ` D ) ` w ) ) ) |
| 172 |
145 163 171
|
3eqtr2rd |
|- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) /\ w e. ( Base ` D ) ) -> ( ( g ( <. x , y >. ( comp ` C ) z ) f ) ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ( ( Id ` D ) ` w ) ) = ( ( ( ( y ( 2nd ` G ) z ) ` g ) ` w ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) , ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` z ) ) ` w ) ) ( ( ( x ( 2nd ` G ) y ) ` f ) ` w ) ) ) |
| 173 |
172
|
mpteq2dva |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( w e. ( Base ` D ) |-> ( ( g ( <. x , y >. ( comp ` C ) z ) f ) ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ( ( Id ` D ) ` w ) ) ) = ( w e. ( Base ` D ) |-> ( ( ( ( y ( 2nd ` G ) z ) ` g ) ` w ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) , ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` z ) ) ` w ) ) ( ( ( x ( 2nd ` G ) y ) ` f ) ` w ) ) ) ) |
| 174 |
6 10 26 107 113 119 126 139 133
|
catcocl |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x ( Hom ` C ) z ) ) |
| 175 |
|
eqid |
|- ( ( x ( 2nd ` G ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( x ( 2nd ` G ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) |
| 176 |
1 6 107 109 111 7 10 11 113 126 174 175
|
curf2 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( x ( 2nd ` G ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( w e. ( Base ` D ) |-> ( ( g ( <. x , y >. ( comp ` C ) z ) f ) ( <. x , w >. ( 2nd ` F ) <. z , w >. ) ( ( Id ` D ) ` w ) ) ) ) |
| 177 |
1 6 107 109 111 7 10 11 113 119 139 141 23
|
curf2cl |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( x ( 2nd ` G ) y ) ` f ) e. ( ( ( 1st ` G ) ` x ) ( D Nat E ) ( ( 1st ` G ) ` y ) ) ) |
| 178 |
1 6 107 109 111 7 10 11 119 126 133 135 23
|
curf2cl |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( y ( 2nd ` G ) z ) ` g ) e. ( ( ( 1st ` G ) ` y ) ( D Nat E ) ( ( 1st ` G ) ` z ) ) ) |
| 179 |
2 23 7 148 27 177 178
|
fucco |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( y ( 2nd ` G ) z ) ` g ) ( <. ( ( 1st ` G ) ` x ) , ( ( 1st ` G ) ` y ) >. ( comp ` Q ) ( ( 1st ` G ) ` z ) ) ( ( x ( 2nd ` G ) y ) ` f ) ) = ( w e. ( Base ` D ) |-> ( ( ( ( y ( 2nd ` G ) z ) ` g ) ` w ) ( <. ( ( 1st ` ( ( 1st ` G ) ` x ) ) ` w ) , ( ( 1st ` ( ( 1st ` G ) ` y ) ) ` w ) >. ( comp ` E ) ( ( 1st ` ( ( 1st ` G ) ` z ) ) ` w ) ) ( ( ( x ( 2nd ` G ) y ) ` f ) ` w ) ) ) ) |
| 180 |
173 176 179
|
3eqtr4d |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) z ) ) ) -> ( ( x ( 2nd ` G ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` G ) z ) ` g ) ( <. ( ( 1st ` G ) ` x ) , ( ( 1st ` G ) ` y ) >. ( comp ` Q ) ( ( 1st ` G ) ` z ) ) ( ( x ( 2nd ` G ) y ) ` f ) ) ) |
| 181 |
6 22 10 24 9 25 26 27 3 31 40 46 62 106 180
|
isfuncd |
|- ( ph -> ( 1st ` G ) ( C Func Q ) ( 2nd ` G ) ) |
| 182 |
|
df-br |
|- ( ( 1st ` G ) ( C Func Q ) ( 2nd ` G ) <-> <. ( 1st ` G ) , ( 2nd ` G ) >. e. ( C Func Q ) ) |
| 183 |
181 182
|
sylib |
|- ( ph -> <. ( 1st ` G ) , ( 2nd ` G ) >. e. ( C Func Q ) ) |
| 184 |
21 183
|
eqeltrd |
|- ( ph -> G e. ( C Func Q ) ) |