| Step |
Hyp |
Ref |
Expression |
| 1 |
|
curfcl.g |
⊢ 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF 𝐹 ) |
| 2 |
|
curfcl.q |
⊢ 𝑄 = ( 𝐷 FuncCat 𝐸 ) |
| 3 |
|
curfcl.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 4 |
|
curfcl.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 5 |
|
curfcl.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 8 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 9 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
| 10 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 11 |
|
eqid |
⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) |
| 12 |
1 6 3 4 5 7 8 9 10 11
|
curfval |
⊢ ( 𝜑 → 𝐺 = 〈 ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) 〉 ) |
| 13 |
|
fvex |
⊢ ( Base ‘ 𝐶 ) ∈ V |
| 14 |
13
|
mptex |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) ∈ V |
| 15 |
13 13
|
mpoex |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) ∈ V |
| 16 |
14 15
|
op1std |
⊢ ( 𝐺 = 〈 ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) 〉 → ( 1st ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) ) |
| 17 |
12 16
|
syl |
⊢ ( 𝜑 → ( 1st ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) ) |
| 18 |
14 15
|
op2ndd |
⊢ ( 𝐺 = 〈 ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) 〉 → ( 2nd ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) ) |
| 19 |
12 18
|
syl |
⊢ ( 𝜑 → ( 2nd ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) ) |
| 20 |
17 19
|
opeq12d |
⊢ ( 𝜑 → 〈 ( 1st ‘ 𝐺 ) , ( 2nd ‘ 𝐺 ) 〉 = 〈 ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) 〉 ) |
| 21 |
12 20
|
eqtr4d |
⊢ ( 𝜑 → 𝐺 = 〈 ( 1st ‘ 𝐺 ) , ( 2nd ‘ 𝐺 ) 〉 ) |
| 22 |
2
|
fucbas |
⊢ ( 𝐷 Func 𝐸 ) = ( Base ‘ 𝑄 ) |
| 23 |
|
eqid |
⊢ ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 ) |
| 24 |
2 23
|
fuchom |
⊢ ( 𝐷 Nat 𝐸 ) = ( Hom ‘ 𝑄 ) |
| 25 |
|
eqid |
⊢ ( Id ‘ 𝑄 ) = ( Id ‘ 𝑄 ) |
| 26 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
| 27 |
|
eqid |
⊢ ( comp ‘ 𝑄 ) = ( comp ‘ 𝑄 ) |
| 28 |
|
funcrcl |
⊢ ( 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) → ( ( 𝐶 ×c 𝐷 ) ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
| 29 |
5 28
|
syl |
⊢ ( 𝜑 → ( ( 𝐶 ×c 𝐷 ) ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
| 30 |
29
|
simprd |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 31 |
2 4 30
|
fuccat |
⊢ ( 𝜑 → 𝑄 ∈ Cat ) |
| 32 |
|
opex |
⊢ 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ∈ V |
| 33 |
32
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ∈ V ) |
| 34 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) |
| 35 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐷 ∈ Cat ) |
| 36 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 38 |
|
eqid |
⊢ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) = ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) |
| 39 |
1 6 34 35 36 7 37 38
|
curf1cl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 𝐷 Func 𝐸 ) ) |
| 40 |
33 17 39
|
fmpt2d |
⊢ ( 𝜑 → ( 1st ‘ 𝐺 ) : ( Base ‘ 𝐶 ) ⟶ ( 𝐷 Func 𝐸 ) ) |
| 41 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) |
| 42 |
|
ovex |
⊢ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∈ V |
| 43 |
42
|
mptex |
⊢ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ∈ V |
| 44 |
41 43
|
fnmpoi |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) |
| 45 |
19
|
fneq1d |
⊢ ( 𝜑 → ( ( 2nd ‘ 𝐺 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) |
| 46 |
44 45
|
mpbiri |
⊢ ( 𝜑 → ( 2nd ‘ 𝐺 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 47 |
|
fvex |
⊢ ( Base ‘ 𝐷 ) ∈ V |
| 48 |
47
|
mptex |
⊢ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ∈ V |
| 49 |
48
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ∈ V ) |
| 50 |
19
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) 𝑦 ) ) |
| 51 |
41
|
ovmpt4g |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ∈ V ) → ( 𝑥 ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) 𝑦 ) = ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) |
| 52 |
43 51
|
mp3an3 |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) 𝑦 ) = ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) |
| 53 |
50 52
|
sylan9eq |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) = ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) |
| 54 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝐶 ∈ Cat ) |
| 55 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝐷 ∈ Cat ) |
| 56 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 57 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 58 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 59 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 60 |
|
eqid |
⊢ ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑔 ) = ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑔 ) |
| 61 |
1 6 54 55 56 7 10 11 57 58 59 60 23
|
curf2cl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑔 ) ∈ ( ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ( 𝐷 Nat 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 62 |
49 53 61
|
fmpt2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ( 𝐷 Nat 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 63 |
|
eqid |
⊢ ( 𝐶 ×c 𝐷 ) = ( 𝐶 ×c 𝐷 ) |
| 64 |
63 6 7
|
xpcbas |
⊢ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) = ( Base ‘ ( 𝐶 ×c 𝐷 ) ) |
| 65 |
|
eqid |
⊢ ( Id ‘ ( 𝐶 ×c 𝐷 ) ) = ( Id ‘ ( 𝐶 ×c 𝐷 ) ) |
| 66 |
|
eqid |
⊢ ( Id ‘ 𝐸 ) = ( Id ‘ 𝐸 ) |
| 67 |
|
relfunc |
⊢ Rel ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) |
| 68 |
|
1st2ndbr |
⊢ ( ( Rel ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ∧ 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
| 69 |
67 5 68
|
sylancr |
⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
| 70 |
69
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
| 71 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
| 72 |
71
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
| 73 |
64 65 66 70 72
|
funcid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ‘ ( ( Id ‘ ( 𝐶 ×c 𝐷 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) ) |
| 74 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → 𝐶 ∈ Cat ) |
| 75 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → 𝐷 ∈ Cat ) |
| 76 |
37
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 77 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) ) |
| 78 |
63 74 75 6 7 9 11 65 76 77
|
xpcid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( Id ‘ ( 𝐶 ×c 𝐷 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) = 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) 〉 ) |
| 79 |
78
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ‘ ( ( Id ‘ ( 𝐶 ×c 𝐷 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) ) = ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) 〉 ) ) |
| 80 |
|
df-ov |
⊢ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) ) = ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) 〉 ) |
| 81 |
79 80
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ‘ ( ( Id ‘ ( 𝐶 ×c 𝐷 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) ) ) |
| 82 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 83 |
1 6 74 75 82 7 76 38 77
|
curf11 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) = ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) |
| 84 |
|
df-ov |
⊢ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) |
| 85 |
83 84
|
eqtr2di |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) ) |
| 86 |
85
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) ) ) |
| 87 |
73 81 86
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) ) ) |
| 88 |
87
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) ) ) ) |
| 89 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐸 ∈ Cat ) |
| 90 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 91 |
90 66
|
cidfn |
⊢ ( 𝐸 ∈ Cat → ( Id ‘ 𝐸 ) Fn ( Base ‘ 𝐸 ) ) |
| 92 |
89 91
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( Id ‘ 𝐸 ) Fn ( Base ‘ 𝐸 ) ) |
| 93 |
|
dffn2 |
⊢ ( ( Id ‘ 𝐸 ) Fn ( Base ‘ 𝐸 ) ↔ ( Id ‘ 𝐸 ) : ( Base ‘ 𝐸 ) ⟶ V ) |
| 94 |
92 93
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( Id ‘ 𝐸 ) : ( Base ‘ 𝐸 ) ⟶ V ) |
| 95 |
|
relfunc |
⊢ Rel ( 𝐷 Func 𝐸 ) |
| 96 |
|
1st2ndbr |
⊢ ( ( Rel ( 𝐷 Func 𝐸 ) ∧ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 𝐷 Func 𝐸 ) ) → ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ( 𝐷 Func 𝐸 ) ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 97 |
95 39 96
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ( 𝐷 Func 𝐸 ) ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 98 |
7 90 97
|
funcf1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) ) |
| 99 |
|
fcompt |
⊢ ( ( ( Id ‘ 𝐸 ) : ( Base ‘ 𝐸 ) ⟶ V ∧ ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) ) → ( ( Id ‘ 𝐸 ) ∘ ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ) = ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) ) ) ) |
| 100 |
94 98 99
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝐸 ) ∘ ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ) = ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) ) ) ) |
| 101 |
88 100
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) ) ) = ( ( Id ‘ 𝐸 ) ∘ ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
| 102 |
6 10 9 34 37
|
catidcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 103 |
|
eqid |
⊢ ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) |
| 104 |
1 6 34 35 36 7 10 11 37 37 102 103
|
curf2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) ) ) ) |
| 105 |
2 25 66 39
|
fucid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝑄 ) ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐸 ) ∘ ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
| 106 |
101 104 105
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑄 ) ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 107 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝐶 ∈ Cat ) |
| 108 |
107
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 𝐶 ∈ Cat ) |
| 109 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝐷 ∈ Cat ) |
| 110 |
109
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 𝐷 ∈ Cat ) |
| 111 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 112 |
111
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 113 |
|
simp21 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 114 |
113
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 115 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 𝑤 ∈ ( Base ‘ 𝐷 ) ) |
| 116 |
1 6 108 110 112 7 114 38 115
|
curf11 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) = ( 𝑥 ( 1st ‘ 𝐹 ) 𝑤 ) ) |
| 117 |
|
df-ov |
⊢ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) |
| 118 |
116 117
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) ) |
| 119 |
|
simp22 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 120 |
119
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 121 |
|
eqid |
⊢ ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) = ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) |
| 122 |
1 6 108 110 112 7 120 121 115
|
curf11 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ‘ 𝑤 ) = ( 𝑦 ( 1st ‘ 𝐹 ) 𝑤 ) ) |
| 123 |
|
df-ov |
⊢ ( 𝑦 ( 1st ‘ 𝐹 ) 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑦 , 𝑤 〉 ) |
| 124 |
122 123
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ‘ 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑦 , 𝑤 〉 ) ) |
| 125 |
118 124
|
opeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ‘ 𝑤 ) 〉 = 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑦 , 𝑤 〉 ) 〉 ) |
| 126 |
|
simp23 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
| 127 |
126
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
| 128 |
|
eqid |
⊢ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) = ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) |
| 129 |
1 6 108 110 112 7 127 128 115
|
curf11 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) = ( 𝑧 ( 1st ‘ 𝐹 ) 𝑤 ) ) |
| 130 |
|
df-ov |
⊢ ( 𝑧 ( 1st ‘ 𝐹 ) 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) |
| 131 |
129 130
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) |
| 132 |
125 131
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) ) = ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑦 , 𝑤 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ) |
| 133 |
|
simp3r |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 134 |
133
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 135 |
|
eqid |
⊢ ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) = ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) |
| 136 |
1 6 108 110 112 7 10 11 120 127 134 135 115
|
curf2val |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ‘ 𝑤 ) = ( 𝑔 ( 〈 𝑦 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) ) |
| 137 |
|
df-ov |
⊢ ( 𝑔 ( 〈 𝑦 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) = ( ( 〈 𝑦 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) |
| 138 |
136 137
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ‘ 𝑤 ) = ( ( 〈 𝑦 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ) |
| 139 |
|
simp3l |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 140 |
139
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 141 |
|
eqid |
⊢ ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) = ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) |
| 142 |
1 6 108 110 112 7 10 11 114 120 140 141 115
|
curf2val |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ‘ 𝑤 ) = ( 𝑓 ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) ) |
| 143 |
|
df-ov |
⊢ ( 𝑓 ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) = ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑤 〉 ) ‘ 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) |
| 144 |
142 143
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ‘ 𝑤 ) = ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑤 〉 ) ‘ 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ) |
| 145 |
132 138 144
|
oveq123d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ‘ 𝑤 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) ) ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ‘ 𝑤 ) ) = ( ( ( 〈 𝑦 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑦 , 𝑤 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑤 〉 ) ‘ 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ) ) |
| 146 |
|
eqid |
⊢ ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) = ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) |
| 147 |
|
eqid |
⊢ ( comp ‘ ( 𝐶 ×c 𝐷 ) ) = ( comp ‘ ( 𝐶 ×c 𝐷 ) ) |
| 148 |
|
eqid |
⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) |
| 149 |
67 112 68
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
| 150 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑥 , 𝑤 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
| 151 |
113 150
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑥 , 𝑤 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
| 152 |
|
opelxpi |
⊢ ( ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑦 , 𝑤 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
| 153 |
119 152
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑦 , 𝑤 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
| 154 |
|
opelxpi |
⊢ ( ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑧 , 𝑤 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
| 155 |
126 154
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑧 , 𝑤 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
| 156 |
7 8 11 110 115
|
catidcl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ∈ ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) |
| 157 |
140 156
|
opelxpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ∈ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
| 158 |
63 6 7 10 8 114 115 120 115 146
|
xpchom2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( 〈 𝑥 , 𝑤 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑦 , 𝑤 〉 ) = ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
| 159 |
157 158
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ∈ ( 〈 𝑥 , 𝑤 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑦 , 𝑤 〉 ) ) |
| 160 |
134 156
|
opelxpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ∈ ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
| 161 |
63 6 7 10 8 120 115 127 115 146
|
xpchom2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( 〈 𝑦 , 𝑤 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) = ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
| 162 |
160 161
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ∈ ( 〈 𝑦 , 𝑤 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) ) |
| 163 |
64 146 147 148 149 151 153 155 159 162
|
funcco |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ ( 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ( 〈 〈 𝑥 , 𝑤 〉 , 〈 𝑦 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ) = ( ( ( 〈 𝑦 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑦 , 𝑤 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑤 〉 ) ‘ 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ) ) |
| 164 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
| 165 |
63 6 7 10 8 114 115 120 115 26 164 147 127 115 140 156 134 156
|
xpcco2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ( 〈 〈 𝑥 , 𝑤 〉 , 〈 𝑦 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) = 〈 ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) , ( ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ( 〈 𝑤 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) 〉 ) |
| 166 |
7 8 11 110 115 164 115 156
|
catlid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ( 〈 𝑤 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) = ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) |
| 167 |
166
|
opeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) , ( ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ( 〈 𝑤 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) 〉 = 〈 ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) |
| 168 |
165 167
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ( 〈 〈 𝑥 , 𝑤 〉 , 〈 𝑦 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) = 〈 ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) |
| 169 |
168
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ ( 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ( 〈 〈 𝑥 , 𝑤 〉 , 〈 𝑦 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ) = ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ) |
| 170 |
|
df-ov |
⊢ ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) = ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) |
| 171 |
169 170
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ ( 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ( 〈 〈 𝑥 , 𝑤 〉 , 〈 𝑦 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ) = ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) ) |
| 172 |
145 163 171
|
3eqtr2rd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) = ( ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ‘ 𝑤 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) ) ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ‘ 𝑤 ) ) ) |
| 173 |
172
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑤 ∈ ( Base ‘ 𝐷 ) ↦ ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) ) = ( 𝑤 ∈ ( Base ‘ 𝐷 ) ↦ ( ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ‘ 𝑤 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) ) ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ‘ 𝑤 ) ) ) ) |
| 174 |
6 10 26 107 113 119 126 139 133
|
catcocl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 175 |
|
eqid |
⊢ ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) |
| 176 |
1 6 107 109 111 7 10 11 113 126 174 175
|
curf2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( 𝑤 ∈ ( Base ‘ 𝐷 ) ↦ ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) ) ) |
| 177 |
1 6 107 109 111 7 10 11 113 119 139 141 23
|
curf2cl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ∈ ( ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ( 𝐷 Nat 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 178 |
1 6 107 109 111 7 10 11 119 126 133 135 23
|
curf2cl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ∈ ( ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ( 𝐷 Nat 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
| 179 |
2 23 7 148 27 177 178
|
fucco |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝑄 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ) = ( 𝑤 ∈ ( Base ‘ 𝐷 ) ↦ ( ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ‘ 𝑤 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) ) ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ‘ 𝑤 ) ) ) ) |
| 180 |
173 176 179
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝑄 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ) ) |
| 181 |
6 22 10 24 9 25 26 27 3 31 40 46 62 106 180
|
isfuncd |
⊢ ( 𝜑 → ( 1st ‘ 𝐺 ) ( 𝐶 Func 𝑄 ) ( 2nd ‘ 𝐺 ) ) |
| 182 |
|
df-br |
⊢ ( ( 1st ‘ 𝐺 ) ( 𝐶 Func 𝑄 ) ( 2nd ‘ 𝐺 ) ↔ 〈 ( 1st ‘ 𝐺 ) , ( 2nd ‘ 𝐺 ) 〉 ∈ ( 𝐶 Func 𝑄 ) ) |
| 183 |
181 182
|
sylib |
⊢ ( 𝜑 → 〈 ( 1st ‘ 𝐺 ) , ( 2nd ‘ 𝐺 ) 〉 ∈ ( 𝐶 Func 𝑄 ) ) |
| 184 |
21 183
|
eqeltrd |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐶 Func 𝑄 ) ) |