Step |
Hyp |
Ref |
Expression |
1 |
|
curfcl.g |
⊢ 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF 𝐹 ) |
2 |
|
curfcl.q |
⊢ 𝑄 = ( 𝐷 FuncCat 𝐸 ) |
3 |
|
curfcl.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
curfcl.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
5 |
|
curfcl.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
8 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
9 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
10 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
11 |
|
eqid |
⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) |
12 |
1 6 3 4 5 7 8 9 10 11
|
curfval |
⊢ ( 𝜑 → 𝐺 = 〈 ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) 〉 ) |
13 |
|
fvex |
⊢ ( Base ‘ 𝐶 ) ∈ V |
14 |
13
|
mptex |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) ∈ V |
15 |
13 13
|
mpoex |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) ∈ V |
16 |
14 15
|
op1std |
⊢ ( 𝐺 = 〈 ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) 〉 → ( 1st ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) ) |
17 |
12 16
|
syl |
⊢ ( 𝜑 → ( 1st ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) ) |
18 |
14 15
|
op2ndd |
⊢ ( 𝐺 = 〈 ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) 〉 → ( 2nd ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) ) |
19 |
12 18
|
syl |
⊢ ( 𝜑 → ( 2nd ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) ) |
20 |
17 19
|
opeq12d |
⊢ ( 𝜑 → 〈 ( 1st ‘ 𝐺 ) , ( 2nd ‘ 𝐺 ) 〉 = 〈 ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) 〉 ) |
21 |
12 20
|
eqtr4d |
⊢ ( 𝜑 → 𝐺 = 〈 ( 1st ‘ 𝐺 ) , ( 2nd ‘ 𝐺 ) 〉 ) |
22 |
2
|
fucbas |
⊢ ( 𝐷 Func 𝐸 ) = ( Base ‘ 𝑄 ) |
23 |
|
eqid |
⊢ ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 ) |
24 |
2 23
|
fuchom |
⊢ ( 𝐷 Nat 𝐸 ) = ( Hom ‘ 𝑄 ) |
25 |
|
eqid |
⊢ ( Id ‘ 𝑄 ) = ( Id ‘ 𝑄 ) |
26 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
27 |
|
eqid |
⊢ ( comp ‘ 𝑄 ) = ( comp ‘ 𝑄 ) |
28 |
|
funcrcl |
⊢ ( 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) → ( ( 𝐶 ×c 𝐷 ) ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
29 |
5 28
|
syl |
⊢ ( 𝜑 → ( ( 𝐶 ×c 𝐷 ) ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
30 |
29
|
simprd |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
31 |
2 4 30
|
fuccat |
⊢ ( 𝜑 → 𝑄 ∈ Cat ) |
32 |
|
opex |
⊢ 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ∈ V |
33 |
32
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 〈 ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ ( Base ‘ 𝐷 ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ∈ V ) |
34 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) |
35 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐷 ∈ Cat ) |
36 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
38 |
|
eqid |
⊢ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) = ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) |
39 |
1 6 34 35 36 7 37 38
|
curf1cl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 𝐷 Func 𝐸 ) ) |
40 |
33 17 39
|
fmpt2d |
⊢ ( 𝜑 → ( 1st ‘ 𝐺 ) : ( Base ‘ 𝐶 ) ⟶ ( 𝐷 Func 𝐸 ) ) |
41 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) |
42 |
|
ovex |
⊢ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∈ V |
43 |
42
|
mptex |
⊢ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ∈ V |
44 |
41 43
|
fnmpoi |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) |
45 |
19
|
fneq1d |
⊢ ( 𝜑 → ( ( 2nd ‘ 𝐺 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) |
46 |
44 45
|
mpbiri |
⊢ ( 𝜑 → ( 2nd ‘ 𝐺 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
47 |
|
fvex |
⊢ ( Base ‘ 𝐷 ) ∈ V |
48 |
47
|
mptex |
⊢ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ∈ V |
49 |
48
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ∈ V ) |
50 |
19
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) 𝑦 ) ) |
51 |
41
|
ovmpt4g |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ∈ V ) → ( 𝑥 ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) 𝑦 ) = ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) |
52 |
43 51
|
mp3an3 |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) 𝑦 ) = ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) |
53 |
50 52
|
sylan9eq |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) = ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ ( 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) |
54 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝐶 ∈ Cat ) |
55 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝐷 ∈ Cat ) |
56 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
57 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
58 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
59 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
60 |
|
eqid |
⊢ ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑔 ) = ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑔 ) |
61 |
1 6 54 55 56 7 10 11 57 58 59 60 23
|
curf2cl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑔 ) ∈ ( ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ( 𝐷 Nat 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
62 |
49 53 61
|
fmpt2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ( 𝐷 Nat 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
63 |
|
eqid |
⊢ ( 𝐶 ×c 𝐷 ) = ( 𝐶 ×c 𝐷 ) |
64 |
63 6 7
|
xpcbas |
⊢ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) = ( Base ‘ ( 𝐶 ×c 𝐷 ) ) |
65 |
|
eqid |
⊢ ( Id ‘ ( 𝐶 ×c 𝐷 ) ) = ( Id ‘ ( 𝐶 ×c 𝐷 ) ) |
66 |
|
eqid |
⊢ ( Id ‘ 𝐸 ) = ( Id ‘ 𝐸 ) |
67 |
|
relfunc |
⊢ Rel ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) |
68 |
|
1st2ndbr |
⊢ ( ( Rel ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ∧ 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
69 |
67 5 68
|
sylancr |
⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
70 |
69
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
71 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
72 |
71
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
73 |
64 65 66 70 72
|
funcid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ‘ ( ( Id ‘ ( 𝐶 ×c 𝐷 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) ) |
74 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → 𝐶 ∈ Cat ) |
75 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → 𝐷 ∈ Cat ) |
76 |
37
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
77 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) ) |
78 |
63 74 75 6 7 9 11 65 76 77
|
xpcid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( Id ‘ ( 𝐶 ×c 𝐷 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) = 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) 〉 ) |
79 |
78
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ‘ ( ( Id ‘ ( 𝐶 ×c 𝐷 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) ) = ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) 〉 ) ) |
80 |
|
df-ov |
⊢ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) ) = ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) 〉 ) |
81 |
79 80
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ‘ ( ( Id ‘ ( 𝐶 ×c 𝐷 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) ) ) |
82 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
83 |
1 6 74 75 82 7 76 38 77
|
curf11 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) = ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) |
84 |
|
df-ov |
⊢ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) |
85 |
83 84
|
eqtr2di |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) ) |
86 |
85
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) ) ) |
87 |
73 81 86
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) ) ) |
88 |
87
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) ) ) ) |
89 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐸 ∈ Cat ) |
90 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
91 |
90 66
|
cidfn |
⊢ ( 𝐸 ∈ Cat → ( Id ‘ 𝐸 ) Fn ( Base ‘ 𝐸 ) ) |
92 |
89 91
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( Id ‘ 𝐸 ) Fn ( Base ‘ 𝐸 ) ) |
93 |
|
dffn2 |
⊢ ( ( Id ‘ 𝐸 ) Fn ( Base ‘ 𝐸 ) ↔ ( Id ‘ 𝐸 ) : ( Base ‘ 𝐸 ) ⟶ V ) |
94 |
92 93
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( Id ‘ 𝐸 ) : ( Base ‘ 𝐸 ) ⟶ V ) |
95 |
|
relfunc |
⊢ Rel ( 𝐷 Func 𝐸 ) |
96 |
|
1st2ndbr |
⊢ ( ( Rel ( 𝐷 Func 𝐸 ) ∧ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 𝐷 Func 𝐸 ) ) → ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ( 𝐷 Func 𝐸 ) ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
97 |
95 39 96
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ( 𝐷 Func 𝐸 ) ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
98 |
7 90 97
|
funcf1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) ) |
99 |
|
fcompt |
⊢ ( ( ( Id ‘ 𝐸 ) : ( Base ‘ 𝐸 ) ⟶ V ∧ ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) : ( Base ‘ 𝐷 ) ⟶ ( Base ‘ 𝐸 ) ) → ( ( Id ‘ 𝐸 ) ∘ ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ) = ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) ) ) ) |
100 |
94 98 99
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝐸 ) ∘ ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ) = ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) ) ) ) |
101 |
88 100
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) ) ) = ( ( Id ‘ 𝐸 ) ∘ ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
102 |
6 10 9 34 37
|
catidcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
103 |
|
eqid |
⊢ ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) |
104 |
1 6 34 35 36 7 10 11 37 37 102 103
|
curf2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑦 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑦 ) ) ) ) |
105 |
2 25 66 39
|
fucid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝑄 ) ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐸 ) ∘ ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) |
106 |
101 104 105
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑄 ) ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
107 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝐶 ∈ Cat ) |
108 |
107
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 𝐶 ∈ Cat ) |
109 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝐷 ∈ Cat ) |
110 |
109
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 𝐷 ∈ Cat ) |
111 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
112 |
111
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
113 |
|
simp21 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
114 |
113
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
115 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 𝑤 ∈ ( Base ‘ 𝐷 ) ) |
116 |
1 6 108 110 112 7 114 38 115
|
curf11 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) = ( 𝑥 ( 1st ‘ 𝐹 ) 𝑤 ) ) |
117 |
|
df-ov |
⊢ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) |
118 |
116 117
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) ) |
119 |
|
simp22 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
120 |
119
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
121 |
|
eqid |
⊢ ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) = ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) |
122 |
1 6 108 110 112 7 120 121 115
|
curf11 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ‘ 𝑤 ) = ( 𝑦 ( 1st ‘ 𝐹 ) 𝑤 ) ) |
123 |
|
df-ov |
⊢ ( 𝑦 ( 1st ‘ 𝐹 ) 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑦 , 𝑤 〉 ) |
124 |
122 123
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ‘ 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑦 , 𝑤 〉 ) ) |
125 |
118 124
|
opeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ‘ 𝑤 ) 〉 = 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑦 , 𝑤 〉 ) 〉 ) |
126 |
|
simp23 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
127 |
126
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
128 |
|
eqid |
⊢ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) = ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) |
129 |
1 6 108 110 112 7 127 128 115
|
curf11 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) = ( 𝑧 ( 1st ‘ 𝐹 ) 𝑤 ) ) |
130 |
|
df-ov |
⊢ ( 𝑧 ( 1st ‘ 𝐹 ) 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) |
131 |
129 130
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) |
132 |
125 131
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) ) = ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑦 , 𝑤 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ) |
133 |
|
simp3r |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
134 |
133
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
135 |
|
eqid |
⊢ ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) = ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) |
136 |
1 6 108 110 112 7 10 11 120 127 134 135 115
|
curf2val |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ‘ 𝑤 ) = ( 𝑔 ( 〈 𝑦 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) ) |
137 |
|
df-ov |
⊢ ( 𝑔 ( 〈 𝑦 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) = ( ( 〈 𝑦 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) |
138 |
136 137
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ‘ 𝑤 ) = ( ( 〈 𝑦 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ) |
139 |
|
simp3l |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
140 |
139
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
141 |
|
eqid |
⊢ ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) = ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) |
142 |
1 6 108 110 112 7 10 11 114 120 140 141 115
|
curf2val |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ‘ 𝑤 ) = ( 𝑓 ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) ) |
143 |
|
df-ov |
⊢ ( 𝑓 ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) = ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑤 〉 ) ‘ 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) |
144 |
142 143
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ‘ 𝑤 ) = ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑤 〉 ) ‘ 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ) |
145 |
132 138 144
|
oveq123d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ‘ 𝑤 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) ) ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ‘ 𝑤 ) ) = ( ( ( 〈 𝑦 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑦 , 𝑤 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑤 〉 ) ‘ 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ) ) |
146 |
|
eqid |
⊢ ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) = ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) |
147 |
|
eqid |
⊢ ( comp ‘ ( 𝐶 ×c 𝐷 ) ) = ( comp ‘ ( 𝐶 ×c 𝐷 ) ) |
148 |
|
eqid |
⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) |
149 |
67 112 68
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
150 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑥 , 𝑤 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
151 |
113 150
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑥 , 𝑤 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
152 |
|
opelxpi |
⊢ ( ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑦 , 𝑤 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
153 |
119 152
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑦 , 𝑤 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
154 |
|
opelxpi |
⊢ ( ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑧 , 𝑤 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
155 |
126 154
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑧 , 𝑤 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
156 |
7 8 11 110 115
|
catidcl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ∈ ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) |
157 |
140 156
|
opelxpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ∈ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
158 |
63 6 7 10 8 114 115 120 115 146
|
xpchom2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( 〈 𝑥 , 𝑤 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑦 , 𝑤 〉 ) = ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
159 |
157 158
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ∈ ( 〈 𝑥 , 𝑤 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑦 , 𝑤 〉 ) ) |
160 |
134 156
|
opelxpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ∈ ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
161 |
63 6 7 10 8 120 115 127 115 146
|
xpchom2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( 〈 𝑦 , 𝑤 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) = ( ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
162 |
160 161
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ∈ ( 〈 𝑦 , 𝑤 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) ) |
163 |
64 146 147 148 149 151 153 155 159 162
|
funcco |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ ( 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ( 〈 〈 𝑥 , 𝑤 〉 , 〈 𝑦 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ) = ( ( ( 〈 𝑦 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑦 , 𝑤 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑤 〉 ) ‘ 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ) ) |
164 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
165 |
63 6 7 10 8 114 115 120 115 26 164 147 127 115 140 156 134 156
|
xpcco2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ( 〈 〈 𝑥 , 𝑤 〉 , 〈 𝑦 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) = 〈 ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) , ( ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ( 〈 𝑤 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) 〉 ) |
166 |
7 8 11 110 115 164 115 156
|
catlid |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ( 〈 𝑤 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) = ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) |
167 |
166
|
opeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) , ( ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ( 〈 𝑤 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) 〉 = 〈 ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) |
168 |
165 167
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ( 〈 〈 𝑥 , 𝑤 〉 , 〈 𝑦 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) = 〈 ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) |
169 |
168
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ ( 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ( 〈 〈 𝑥 , 𝑤 〉 , 〈 𝑦 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ) = ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ) |
170 |
|
df-ov |
⊢ ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) = ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) |
171 |
169 170
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ ( 〈 𝑔 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ( 〈 〈 𝑥 , 𝑤 〉 , 〈 𝑦 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ) = ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) ) |
172 |
145 163 171
|
3eqtr2rd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) = ( ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ‘ 𝑤 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) ) ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ‘ 𝑤 ) ) ) |
173 |
172
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑤 ∈ ( Base ‘ 𝐷 ) ↦ ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) ) = ( 𝑤 ∈ ( Base ‘ 𝐷 ) ↦ ( ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ‘ 𝑤 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) ) ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ‘ 𝑤 ) ) ) ) |
174 |
6 10 26 107 113 119 126 139 133
|
catcocl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
175 |
|
eqid |
⊢ ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) |
176 |
1 6 107 109 111 7 10 11 113 126 174 175
|
curf2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( 𝑤 ∈ ( Base ‘ 𝐷 ) ↦ ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) ) ) |
177 |
1 6 107 109 111 7 10 11 113 119 139 141 23
|
curf2cl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ∈ ( ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ( 𝐷 Nat 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
178 |
1 6 107 109 111 7 10 11 119 126 133 135 23
|
curf2cl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ∈ ( ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ( 𝐷 Nat 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
179 |
2 23 7 148 27 177 178
|
fucco |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝑄 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ) = ( 𝑤 ∈ ( Base ‘ 𝐷 ) ↦ ( ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ‘ 𝑤 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) ) ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ‘ 𝑤 ) ) ) ) |
180 |
173 176 179
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝑄 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ) ) |
181 |
6 22 10 24 9 25 26 27 3 31 40 46 62 106 180
|
isfuncd |
⊢ ( 𝜑 → ( 1st ‘ 𝐺 ) ( 𝐶 Func 𝑄 ) ( 2nd ‘ 𝐺 ) ) |
182 |
|
df-br |
⊢ ( ( 1st ‘ 𝐺 ) ( 𝐶 Func 𝑄 ) ( 2nd ‘ 𝐺 ) ↔ 〈 ( 1st ‘ 𝐺 ) , ( 2nd ‘ 𝐺 ) 〉 ∈ ( 𝐶 Func 𝑄 ) ) |
183 |
181 182
|
sylib |
⊢ ( 𝜑 → 〈 ( 1st ‘ 𝐺 ) , ( 2nd ‘ 𝐺 ) 〉 ∈ ( 𝐶 Func 𝑄 ) ) |
184 |
21 183
|
eqeltrd |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐶 Func 𝑄 ) ) |