Metamath Proof Explorer


Theorem fmpt2d

Description: Domain and codomain of the mapping operation; deduction form. (Contributed by NM, 27-Dec-2014)

Ref Expression
Hypotheses fmpt2d.2 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
fmpt2d.1 ( 𝜑𝐹 = ( 𝑥𝐴𝐵 ) )
fmpt2d.3 ( ( 𝜑𝑦𝐴 ) → ( 𝐹𝑦 ) ∈ 𝐶 )
Assertion fmpt2d ( 𝜑𝐹 : 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 fmpt2d.2 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
2 fmpt2d.1 ( 𝜑𝐹 = ( 𝑥𝐴𝐵 ) )
3 fmpt2d.3 ( ( 𝜑𝑦𝐴 ) → ( 𝐹𝑦 ) ∈ 𝐶 )
4 1 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝐵𝑉 )
5 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
6 5 fnmpt ( ∀ 𝑥𝐴 𝐵𝑉 → ( 𝑥𝐴𝐵 ) Fn 𝐴 )
7 4 6 syl ( 𝜑 → ( 𝑥𝐴𝐵 ) Fn 𝐴 )
8 2 fneq1d ( 𝜑 → ( 𝐹 Fn 𝐴 ↔ ( 𝑥𝐴𝐵 ) Fn 𝐴 ) )
9 7 8 mpbird ( 𝜑𝐹 Fn 𝐴 )
10 3 ralrimiva ( 𝜑 → ∀ 𝑦𝐴 ( 𝐹𝑦 ) ∈ 𝐶 )
11 ffnfv ( 𝐹 : 𝐴𝐶 ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝐹𝑦 ) ∈ 𝐶 ) )
12 9 10 11 sylanbrc ( 𝜑𝐹 : 𝐴𝐶 )