Step |
Hyp |
Ref |
Expression |
1 |
|
fmpt2d.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
2 |
|
fmpt2d.1 |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
3 |
|
fmpt2d.3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ) |
4 |
1
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) |
5 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
6 |
5
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
7 |
4 6
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
8 |
2
|
fneq1d |
⊢ ( 𝜑 → ( 𝐹 Fn 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) ) |
9 |
7 8
|
mpbird |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
10 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ) |
11 |
|
ffnfv |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐶 ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ) ) |
12 |
9 10 11
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐶 ) |