Step |
Hyp |
Ref |
Expression |
1 |
|
fmpt2d.2 |
|- ( ( ph /\ x e. A ) -> B e. V ) |
2 |
|
fmpt2d.1 |
|- ( ph -> F = ( x e. A |-> B ) ) |
3 |
|
fmpt2d.3 |
|- ( ( ph /\ y e. A ) -> ( F ` y ) e. C ) |
4 |
1
|
ralrimiva |
|- ( ph -> A. x e. A B e. V ) |
5 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
6 |
5
|
fnmpt |
|- ( A. x e. A B e. V -> ( x e. A |-> B ) Fn A ) |
7 |
4 6
|
syl |
|- ( ph -> ( x e. A |-> B ) Fn A ) |
8 |
2
|
fneq1d |
|- ( ph -> ( F Fn A <-> ( x e. A |-> B ) Fn A ) ) |
9 |
7 8
|
mpbird |
|- ( ph -> F Fn A ) |
10 |
3
|
ralrimiva |
|- ( ph -> A. y e. A ( F ` y ) e. C ) |
11 |
|
ffnfv |
|- ( F : A --> C <-> ( F Fn A /\ A. y e. A ( F ` y ) e. C ) ) |
12 |
9 10 11
|
sylanbrc |
|- ( ph -> F : A --> C ) |