| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fdm |
|- ( ( F |` A ) : A --> B -> dom ( F |` A ) = A ) |
| 2 |
|
dmres |
|- dom ( F |` A ) = ( A i^i dom F ) |
| 3 |
|
inss2 |
|- ( A i^i dom F ) C_ dom F |
| 4 |
2 3
|
eqsstri |
|- dom ( F |` A ) C_ dom F |
| 5 |
1 4
|
eqsstrrdi |
|- ( ( F |` A ) : A --> B -> A C_ dom F ) |
| 6 |
5
|
sselda |
|- ( ( ( F |` A ) : A --> B /\ x e. A ) -> x e. dom F ) |
| 7 |
|
fvres |
|- ( x e. A -> ( ( F |` A ) ` x ) = ( F ` x ) ) |
| 8 |
7
|
adantl |
|- ( ( ( F |` A ) : A --> B /\ x e. A ) -> ( ( F |` A ) ` x ) = ( F ` x ) ) |
| 9 |
|
ffvelcdm |
|- ( ( ( F |` A ) : A --> B /\ x e. A ) -> ( ( F |` A ) ` x ) e. B ) |
| 10 |
8 9
|
eqeltrrd |
|- ( ( ( F |` A ) : A --> B /\ x e. A ) -> ( F ` x ) e. B ) |
| 11 |
6 10
|
jca |
|- ( ( ( F |` A ) : A --> B /\ x e. A ) -> ( x e. dom F /\ ( F ` x ) e. B ) ) |
| 12 |
11
|
ralrimiva |
|- ( ( F |` A ) : A --> B -> A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) ) |
| 13 |
|
simpl |
|- ( ( x e. dom F /\ ( F ` x ) e. B ) -> x e. dom F ) |
| 14 |
13
|
ralimi |
|- ( A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) -> A. x e. A x e. dom F ) |
| 15 |
|
dfss3 |
|- ( A C_ dom F <-> A. x e. A x e. dom F ) |
| 16 |
14 15
|
sylibr |
|- ( A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) -> A C_ dom F ) |
| 17 |
|
funfn |
|- ( Fun F <-> F Fn dom F ) |
| 18 |
|
fnssres |
|- ( ( F Fn dom F /\ A C_ dom F ) -> ( F |` A ) Fn A ) |
| 19 |
17 18
|
sylanb |
|- ( ( Fun F /\ A C_ dom F ) -> ( F |` A ) Fn A ) |
| 20 |
16 19
|
sylan2 |
|- ( ( Fun F /\ A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) ) -> ( F |` A ) Fn A ) |
| 21 |
|
simpr |
|- ( ( x e. dom F /\ ( F ` x ) e. B ) -> ( F ` x ) e. B ) |
| 22 |
7
|
eleq1d |
|- ( x e. A -> ( ( ( F |` A ) ` x ) e. B <-> ( F ` x ) e. B ) ) |
| 23 |
21 22
|
imbitrrid |
|- ( x e. A -> ( ( x e. dom F /\ ( F ` x ) e. B ) -> ( ( F |` A ) ` x ) e. B ) ) |
| 24 |
23
|
ralimia |
|- ( A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) -> A. x e. A ( ( F |` A ) ` x ) e. B ) |
| 25 |
24
|
adantl |
|- ( ( Fun F /\ A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) ) -> A. x e. A ( ( F |` A ) ` x ) e. B ) |
| 26 |
|
fnfvrnss |
|- ( ( ( F |` A ) Fn A /\ A. x e. A ( ( F |` A ) ` x ) e. B ) -> ran ( F |` A ) C_ B ) |
| 27 |
20 25 26
|
syl2anc |
|- ( ( Fun F /\ A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) ) -> ran ( F |` A ) C_ B ) |
| 28 |
|
df-f |
|- ( ( F |` A ) : A --> B <-> ( ( F |` A ) Fn A /\ ran ( F |` A ) C_ B ) ) |
| 29 |
20 27 28
|
sylanbrc |
|- ( ( Fun F /\ A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) ) -> ( F |` A ) : A --> B ) |
| 30 |
29
|
ex |
|- ( Fun F -> ( A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) -> ( F |` A ) : A --> B ) ) |
| 31 |
12 30
|
impbid2 |
|- ( Fun F -> ( ( F |` A ) : A --> B <-> A. x e. A ( x e. dom F /\ ( F ` x ) e. B ) ) ) |