Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralimia.1 | |- ( x e. A -> ( ph -> ps ) ) |
|
Assertion | ralimia | |- ( A. x e. A ph -> A. x e. A ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimia.1 | |- ( x e. A -> ( ph -> ps ) ) |
|
2 | 1 | a2i | |- ( ( x e. A -> ph ) -> ( x e. A -> ps ) ) |
3 | 2 | ralimi2 | |- ( A. x e. A ph -> A. x e. A ps ) |