Metamath Proof Explorer
		
		
		
		Description:  Inference quantifying both antecedent and consequent.  (Contributed by NM, 19-Jul-1996)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | ralimia.1 | ⊢ ( 𝑥  ∈  𝐴  →  ( 𝜑  →  𝜓 ) ) | 
				
					|  | Assertion | ralimia | ⊢  ( ∀ 𝑥  ∈  𝐴 𝜑  →  ∀ 𝑥  ∈  𝐴 𝜓 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ralimia.1 | ⊢ ( 𝑥  ∈  𝐴  →  ( 𝜑  →  𝜓 ) ) | 
						
							| 2 | 1 | a2i | ⊢ ( ( 𝑥  ∈  𝐴  →  𝜑 )  →  ( 𝑥  ∈  𝐴  →  𝜓 ) ) | 
						
							| 3 | 2 | ralimi2 | ⊢ ( ∀ 𝑥  ∈  𝐴 𝜑  →  ∀ 𝑥  ∈  𝐴 𝜓 ) |