| Step |
Hyp |
Ref |
Expression |
| 1 |
|
curf2.g |
⊢ 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF 𝐹 ) |
| 2 |
|
curf2.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 3 |
|
curf2.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 4 |
|
curf2.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 5 |
|
curf2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 6 |
|
curf2.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 7 |
|
curf2.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 8 |
|
curf2.i |
⊢ 𝐼 = ( Id ‘ 𝐷 ) |
| 9 |
|
curf2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 10 |
|
curf2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) |
| 11 |
|
curf2.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 12 |
|
curf2.l |
⊢ 𝐿 = ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑌 ) ‘ 𝐾 ) |
| 13 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 14 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
| 15 |
1 2 3 4 5 6 13 14 7 8
|
curfval |
⊢ ( 𝜑 → 𝐺 = 〈 ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) 〉 ) |
| 16 |
2
|
fvexi |
⊢ 𝐴 ∈ V |
| 17 |
16
|
mptex |
⊢ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) ∈ V |
| 18 |
16 16
|
mpoex |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) ∈ V |
| 19 |
17 18
|
op2ndd |
⊢ ( 𝐺 = 〈 ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ↦ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) , ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) 〉 → ( 2nd ‘ 𝐺 ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) ) |
| 20 |
15 19
|
syl |
⊢ ( 𝜑 → ( 2nd ‘ 𝐺 ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) ) |
| 21 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑌 ∈ 𝐴 ) |
| 22 |
|
ovex |
⊢ ( 𝑥 𝐻 𝑦 ) ∈ V |
| 23 |
22
|
mptex |
⊢ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ∈ V |
| 24 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ∈ V ) |
| 25 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝐾 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 26 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝑥 = 𝑋 ) |
| 27 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝑦 = 𝑌 ) |
| 28 |
26 27
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) ) |
| 29 |
25 28
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝐾 ∈ ( 𝑥 𝐻 𝑦 ) ) |
| 30 |
6
|
fvexi |
⊢ 𝐵 ∈ V |
| 31 |
30
|
mptex |
⊢ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ∈ V |
| 32 |
31
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) ∧ 𝑔 = 𝐾 ) → ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ∈ V ) |
| 33 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) ∧ 𝑔 = 𝐾 ) → 𝑥 = 𝑋 ) |
| 34 |
33
|
opeq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) ∧ 𝑔 = 𝐾 ) → 〈 𝑥 , 𝑧 〉 = 〈 𝑋 , 𝑧 〉 ) |
| 35 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) ∧ 𝑔 = 𝐾 ) → 𝑦 = 𝑌 ) |
| 36 |
35
|
opeq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) ∧ 𝑔 = 𝐾 ) → 〈 𝑦 , 𝑧 〉 = 〈 𝑌 , 𝑧 〉 ) |
| 37 |
34 36
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) ∧ 𝑔 = 𝐾 ) → ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) = ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ) |
| 38 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) ∧ 𝑔 = 𝐾 ) → 𝑔 = 𝐾 ) |
| 39 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) ∧ 𝑔 = 𝐾 ) → ( 𝐼 ‘ 𝑧 ) = ( 𝐼 ‘ 𝑧 ) ) |
| 40 |
37 38 39
|
oveq123d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) ∧ 𝑔 = 𝐾 ) → ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) = ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) |
| 41 |
40
|
mpteq2dv |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) ∧ 𝑔 = 𝐾 ) → ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐵 ↦ ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) |
| 42 |
29 32 41
|
fvmptdv2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑌 ) = ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) → ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑌 ) ‘ 𝐾 ) = ( 𝑧 ∈ 𝐵 ↦ ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) |
| 43 |
9 21 24 42
|
ovmpodv |
⊢ ( 𝜑 → ( ( 2nd ‘ 𝐺 ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐴 ↦ ( 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) ↦ ( 𝑧 ∈ 𝐵 ↦ ( 𝑔 ( 〈 𝑥 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑦 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) → ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑌 ) ‘ 𝐾 ) = ( 𝑧 ∈ 𝐵 ↦ ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) ) |
| 44 |
20 43
|
mpd |
⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 𝐺 ) 𝑌 ) ‘ 𝐾 ) = ( 𝑧 ∈ 𝐵 ↦ ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) |
| 45 |
12 44
|
eqtrid |
⊢ ( 𝜑 → 𝐿 = ( 𝑧 ∈ 𝐵 ↦ ( 𝐾 ( 〈 𝑋 , 𝑧 〉 ( 2nd ‘ 𝐹 ) 〈 𝑌 , 𝑧 〉 ) ( 𝐼 ‘ 𝑧 ) ) ) ) |