Description: Alternate deduction version of ovmpo , suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovmpodf.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | |
| ovmpodf.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ 𝐷 ) | ||
| ovmpodf.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝑅 ∈ 𝑉 ) | ||
| ovmpodf.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( ( 𝐴 𝐹 𝐵 ) = 𝑅 → 𝜓 ) ) | ||
| Assertion | ovmpodv | ⊢ ( 𝜑 → ( 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpodf.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | |
| 2 | ovmpodf.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ 𝐷 ) | |
| 3 | ovmpodf.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝑅 ∈ 𝑉 ) | |
| 4 | ovmpodf.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( ( 𝐴 𝐹 𝐵 ) = 𝑅 → 𝜓 ) ) | |
| 5 | nfcv | ⊢ Ⅎ 𝑥 𝐹 | |
| 6 | nfv | ⊢ Ⅎ 𝑥 𝜓 | |
| 7 | nfcv | ⊢ Ⅎ 𝑦 𝐹 | |
| 8 | nfv | ⊢ Ⅎ 𝑦 𝜓 | |
| 9 | 1 2 3 4 5 6 7 8 | ovmpodf | ⊢ ( 𝜑 → ( 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) → 𝜓 ) ) |