| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovmpodf.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |
| 2 |
|
ovmpodf.2 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ 𝐷 ) |
| 3 |
|
ovmpodf.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝑅 ∈ 𝑉 ) |
| 4 |
|
ovmpodf.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( ( 𝐴 𝐹 𝐵 ) = 𝑅 → 𝜓 ) ) |
| 5 |
|
ovmpodf.5 |
⊢ Ⅎ 𝑥 𝐹 |
| 6 |
|
ovmpodf.6 |
⊢ Ⅎ 𝑥 𝜓 |
| 7 |
|
ovmpodf.7 |
⊢ Ⅎ 𝑦 𝐹 |
| 8 |
|
ovmpodf.8 |
⊢ Ⅎ 𝑦 𝜓 |
| 9 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 10 |
|
nfmpo1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) |
| 11 |
5 10
|
nfeq |
⊢ Ⅎ 𝑥 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) |
| 12 |
11 6
|
nfim |
⊢ Ⅎ 𝑥 ( 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) → 𝜓 ) |
| 13 |
1
|
elexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 14 |
|
isset |
⊢ ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 ) |
| 15 |
13 14
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 𝑥 = 𝐴 ) |
| 16 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝑥 = 𝐴 ) |
| 17 |
|
nfmpo2 |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) |
| 18 |
7 17
|
nfeq |
⊢ Ⅎ 𝑦 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) |
| 19 |
18 8
|
nfim |
⊢ Ⅎ 𝑦 ( 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) → 𝜓 ) |
| 20 |
2
|
elexd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ V ) |
| 21 |
|
isset |
⊢ ( 𝐵 ∈ V ↔ ∃ 𝑦 𝑦 = 𝐵 ) |
| 22 |
20 21
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ∃ 𝑦 𝑦 = 𝐵 ) |
| 23 |
|
oveq |
⊢ ( 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) → ( 𝐴 𝐹 𝐵 ) = ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) ) |
| 24 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝑥 = 𝐴 ) |
| 25 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝑦 = 𝐵 ) |
| 26 |
24 25
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) ) |
| 27 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝐴 ∈ 𝐶 ) |
| 28 |
24 27
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝑥 ∈ 𝐶 ) |
| 29 |
2
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝐵 ∈ 𝐷 ) |
| 30 |
25 29
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝑦 ∈ 𝐷 ) |
| 31 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) |
| 32 |
31
|
ovmpt4g |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ 𝑉 ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) |
| 33 |
28 30 3 32
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) |
| 34 |
26 33
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑅 ) |
| 35 |
34
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( ( 𝐴 𝐹 𝐵 ) = ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) ↔ ( 𝐴 𝐹 𝐵 ) = 𝑅 ) ) |
| 36 |
35 4
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( ( 𝐴 𝐹 𝐵 ) = ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) → 𝜓 ) ) |
| 37 |
23 36
|
syl5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) → 𝜓 ) ) |
| 38 |
37
|
expr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝑦 = 𝐵 → ( 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) → 𝜓 ) ) ) |
| 39 |
16 19 22 38
|
exlimimdd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) → 𝜓 ) ) |
| 40 |
9 12 15 39
|
exlimdd |
⊢ ( 𝜑 → ( 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) → 𝜓 ) ) |