Database  
				CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY  
				Predicate calculus with equality:  Auxiliary axiom schemes (4 schemes)  
				Axiom scheme ax-12 (Substitution)  
				exlimimdd  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   Existential elimination rule of natural deduction.  (Contributed by ML , 17-Jul-2020)   Shorten exlimdd  .  (Revised by Wolf Lammen , 3-Sep-2023) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypotheses 
						exlimdd.1  
						⊢  Ⅎ 𝑥  𝜑   
					 
					
						 
						 
						exlimdd.2  
						⊢  Ⅎ 𝑥  𝜒   
					 
					
						 
						 
						exlimdd.3  
						⊢  ( 𝜑   →  ∃ 𝑥  𝜓  )  
					 
					
						 
						 
						exlimimdd.4  
						⊢  ( 𝜑   →  ( 𝜓   →  𝜒  ) )  
					 
				
					 
					Assertion 
					exlimimdd  
					⊢   ( 𝜑   →  𝜒  )  
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							exlimdd.1  
							⊢  Ⅎ 𝑥  𝜑   
						 
						
							2  
							
								
							 
							exlimdd.2  
							⊢  Ⅎ 𝑥  𝜒   
						 
						
							3  
							
								
							 
							exlimdd.3  
							⊢  ( 𝜑   →  ∃ 𝑥  𝜓  )  
						 
						
							4  
							
								
							 
							exlimimdd.4  
							⊢  ( 𝜑   →  ( 𝜓   →  𝜒  ) )  
						 
						
							5  
							
								1  2  4 
							 
							exlimd  
							⊢  ( 𝜑   →  ( ∃ 𝑥  𝜓   →  𝜒  ) )  
						 
						
							6  
							
								3  5 
							 
							mpd  
							⊢  ( 𝜑   →  𝜒  )