Metamath Proof Explorer


Theorem exlimimdd

Description: Existential elimination rule of natural deduction. (Contributed by ML, 17-Jul-2020) Shorten exlimdd . (Revised by Wolf Lammen, 3-Sep-2023)

Ref Expression
Hypotheses exlimdd.1 xφ
exlimdd.2 xχ
exlimdd.3 φxψ
exlimimdd.4 φψχ
Assertion exlimimdd φχ

Proof

Step Hyp Ref Expression
1 exlimdd.1 xφ
2 exlimdd.2 xχ
3 exlimdd.3 φxψ
4 exlimimdd.4 φψχ
5 1 2 4 exlimd φxψχ
6 3 5 mpd φχ