| Step |
Hyp |
Ref |
Expression |
| 1 |
|
curf2.g |
|
| 2 |
|
curf2.a |
|
| 3 |
|
curf2.c |
|
| 4 |
|
curf2.d |
|
| 5 |
|
curf2.f |
|
| 6 |
|
curf2.b |
|
| 7 |
|
curf2.h |
|
| 8 |
|
curf2.i |
|
| 9 |
|
curf2.x |
|
| 10 |
|
curf2.y |
|
| 11 |
|
curf2.k |
|
| 12 |
|
curf2.l |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
1 2 3 4 5 6 13 14 7 8
|
curfval |
|
| 16 |
2
|
fvexi |
|
| 17 |
16
|
mptex |
|
| 18 |
16 16
|
mpoex |
|
| 19 |
17 18
|
op2ndd |
|
| 20 |
15 19
|
syl |
|
| 21 |
10
|
adantr |
|
| 22 |
|
ovex |
|
| 23 |
22
|
mptex |
|
| 24 |
23
|
a1i |
|
| 25 |
11
|
adantr |
|
| 26 |
|
simprl |
|
| 27 |
|
simprr |
|
| 28 |
26 27
|
oveq12d |
|
| 29 |
25 28
|
eleqtrrd |
|
| 30 |
6
|
fvexi |
|
| 31 |
30
|
mptex |
|
| 32 |
31
|
a1i |
|
| 33 |
|
simplrl |
|
| 34 |
33
|
opeq1d |
|
| 35 |
|
simplrr |
|
| 36 |
35
|
opeq1d |
|
| 37 |
34 36
|
oveq12d |
|
| 38 |
|
simpr |
|
| 39 |
|
eqidd |
|
| 40 |
37 38 39
|
oveq123d |
|
| 41 |
40
|
mpteq2dv |
|
| 42 |
29 32 41
|
fvmptdv2 |
|
| 43 |
9 21 24 42
|
ovmpodv |
|
| 44 |
20 43
|
mpd |
|
| 45 |
12 44
|
eqtrid |
|