Step |
Hyp |
Ref |
Expression |
1 |
|
curf2.g |
|- G = ( <. C , D >. curryF F ) |
2 |
|
curf2.a |
|- A = ( Base ` C ) |
3 |
|
curf2.c |
|- ( ph -> C e. Cat ) |
4 |
|
curf2.d |
|- ( ph -> D e. Cat ) |
5 |
|
curf2.f |
|- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
6 |
|
curf2.b |
|- B = ( Base ` D ) |
7 |
|
curf2.h |
|- H = ( Hom ` C ) |
8 |
|
curf2.i |
|- I = ( Id ` D ) |
9 |
|
curf2.x |
|- ( ph -> X e. A ) |
10 |
|
curf2.y |
|- ( ph -> Y e. A ) |
11 |
|
curf2.k |
|- ( ph -> K e. ( X H Y ) ) |
12 |
|
curf2.l |
|- L = ( ( X ( 2nd ` G ) Y ) ` K ) |
13 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
14 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
15 |
1 2 3 4 5 6 13 14 7 8
|
curfval |
|- ( ph -> G = <. ( x e. A |-> <. ( y e. B |-> ( x ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. A , y e. A |-> ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) ) >. ) |
16 |
2
|
fvexi |
|- A e. _V |
17 |
16
|
mptex |
|- ( x e. A |-> <. ( y e. B |-> ( x ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) e. _V |
18 |
16 16
|
mpoex |
|- ( x e. A , y e. A |-> ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) ) e. _V |
19 |
17 18
|
op2ndd |
|- ( G = <. ( x e. A |-> <. ( y e. B |-> ( x ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) , ( x e. A , y e. A |-> ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) ) >. -> ( 2nd ` G ) = ( x e. A , y e. A |-> ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) ) ) |
20 |
15 19
|
syl |
|- ( ph -> ( 2nd ` G ) = ( x e. A , y e. A |-> ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) ) ) |
21 |
10
|
adantr |
|- ( ( ph /\ x = X ) -> Y e. A ) |
22 |
|
ovex |
|- ( x H y ) e. _V |
23 |
22
|
mptex |
|- ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) e. _V |
24 |
23
|
a1i |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) e. _V ) |
25 |
11
|
adantr |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> K e. ( X H Y ) ) |
26 |
|
simprl |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> x = X ) |
27 |
|
simprr |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> y = Y ) |
28 |
26 27
|
oveq12d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( x H y ) = ( X H Y ) ) |
29 |
25 28
|
eleqtrrd |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> K e. ( x H y ) ) |
30 |
6
|
fvexi |
|- B e. _V |
31 |
30
|
mptex |
|- ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) e. _V |
32 |
31
|
a1i |
|- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ g = K ) -> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) e. _V ) |
33 |
|
simplrl |
|- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ g = K ) -> x = X ) |
34 |
33
|
opeq1d |
|- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ g = K ) -> <. x , z >. = <. X , z >. ) |
35 |
|
simplrr |
|- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ g = K ) -> y = Y ) |
36 |
35
|
opeq1d |
|- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ g = K ) -> <. y , z >. = <. Y , z >. ) |
37 |
34 36
|
oveq12d |
|- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ g = K ) -> ( <. x , z >. ( 2nd ` F ) <. y , z >. ) = ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ) |
38 |
|
simpr |
|- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ g = K ) -> g = K ) |
39 |
|
eqidd |
|- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ g = K ) -> ( I ` z ) = ( I ` z ) ) |
40 |
37 38 39
|
oveq123d |
|- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ g = K ) -> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) = ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) ) |
41 |
40
|
mpteq2dv |
|- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ g = K ) -> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) = ( z e. B |-> ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) ) ) |
42 |
29 32 41
|
fvmptdv2 |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( ( X ( 2nd ` G ) Y ) = ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) -> ( ( X ( 2nd ` G ) Y ) ` K ) = ( z e. B |-> ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) ) ) ) |
43 |
9 21 24 42
|
ovmpodv |
|- ( ph -> ( ( 2nd ` G ) = ( x e. A , y e. A |-> ( g e. ( x H y ) |-> ( z e. B |-> ( g ( <. x , z >. ( 2nd ` F ) <. y , z >. ) ( I ` z ) ) ) ) ) -> ( ( X ( 2nd ` G ) Y ) ` K ) = ( z e. B |-> ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) ) ) ) |
44 |
20 43
|
mpd |
|- ( ph -> ( ( X ( 2nd ` G ) Y ) ` K ) = ( z e. B |-> ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) ) ) |
45 |
12 44
|
eqtrid |
|- ( ph -> L = ( z e. B |-> ( K ( <. X , z >. ( 2nd ` F ) <. Y , z >. ) ( I ` z ) ) ) ) |