| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvmptdv2.1 |
|- ( ph -> A e. D ) |
| 2 |
|
fvmptdv2.2 |
|- ( ( ph /\ x = A ) -> B e. V ) |
| 3 |
|
fvmptdv2.3 |
|- ( ( ph /\ x = A ) -> B = C ) |
| 4 |
|
eqidd |
|- ( ph -> ( x e. D |-> B ) = ( x e. D |-> B ) ) |
| 5 |
1
|
elexd |
|- ( ph -> A e. _V ) |
| 6 |
|
isset |
|- ( A e. _V <-> E. x x = A ) |
| 7 |
5 6
|
sylib |
|- ( ph -> E. x x = A ) |
| 8 |
2
|
elexd |
|- ( ( ph /\ x = A ) -> B e. _V ) |
| 9 |
3 8
|
eqeltrrd |
|- ( ( ph /\ x = A ) -> C e. _V ) |
| 10 |
7 9
|
exlimddv |
|- ( ph -> C e. _V ) |
| 11 |
4 3 1 10
|
fvmptd |
|- ( ph -> ( ( x e. D |-> B ) ` A ) = C ) |
| 12 |
|
fveq1 |
|- ( F = ( x e. D |-> B ) -> ( F ` A ) = ( ( x e. D |-> B ) ` A ) ) |
| 13 |
12
|
eqeq1d |
|- ( F = ( x e. D |-> B ) -> ( ( F ` A ) = C <-> ( ( x e. D |-> B ) ` A ) = C ) ) |
| 14 |
11 13
|
syl5ibrcom |
|- ( ph -> ( F = ( x e. D |-> B ) -> ( F ` A ) = C ) ) |