Metamath Proof Explorer


Theorem fvmptdv2

Description: Alternate deduction version of fvmpt , suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017)

Ref Expression
Hypotheses fvmptdv2.1 φAD
fvmptdv2.2 φx=ABV
fvmptdv2.3 φx=AB=C
Assertion fvmptdv2 φF=xDBFA=C

Proof

Step Hyp Ref Expression
1 fvmptdv2.1 φAD
2 fvmptdv2.2 φx=ABV
3 fvmptdv2.3 φx=AB=C
4 eqidd φxDB=xDB
5 1 elexd φAV
6 isset AVxx=A
7 5 6 sylib φxx=A
8 2 elexd φx=ABV
9 3 8 eqeltrrd φx=ACV
10 7 9 exlimddv φCV
11 4 3 1 10 fvmptd φxDBA=C
12 fveq1 F=xDBFA=xDBA
13 12 eqeq1d F=xDBFA=CxDBA=C
14 11 13 syl5ibrcom φF=xDBFA=C