Metamath Proof Explorer


Theorem curf2val

Description: Value of a component of the curry functor natural transformation. (Contributed by Mario Carneiro, 13-Jan-2017)

Ref Expression
Hypotheses curf2.g G = C D curry F F
curf2.a A = Base C
curf2.c φ C Cat
curf2.d φ D Cat
curf2.f φ F C × c D Func E
curf2.b B = Base D
curf2.h H = Hom C
curf2.i I = Id D
curf2.x φ X A
curf2.y φ Y A
curf2.k φ K X H Y
curf2.l L = X 2 nd G Y K
curf2.z φ Z B
Assertion curf2val φ L Z = K X Z 2 nd F Y Z I Z

Proof

Step Hyp Ref Expression
1 curf2.g G = C D curry F F
2 curf2.a A = Base C
3 curf2.c φ C Cat
4 curf2.d φ D Cat
5 curf2.f φ F C × c D Func E
6 curf2.b B = Base D
7 curf2.h H = Hom C
8 curf2.i I = Id D
9 curf2.x φ X A
10 curf2.y φ Y A
11 curf2.k φ K X H Y
12 curf2.l L = X 2 nd G Y K
13 curf2.z φ Z B
14 1 2 3 4 5 6 7 8 9 10 11 12 curf2 φ L = z B K X z 2 nd F Y z I z
15 simpr φ z = Z z = Z
16 15 opeq2d φ z = Z X z = X Z
17 15 opeq2d φ z = Z Y z = Y Z
18 16 17 oveq12d φ z = Z X z 2 nd F Y z = X Z 2 nd F Y Z
19 eqidd φ z = Z K = K
20 15 fveq2d φ z = Z I z = I Z
21 18 19 20 oveq123d φ z = Z K X z 2 nd F Y z I z = K X Z 2 nd F Y Z I Z
22 ovexd φ K X Z 2 nd F Y Z I Z V
23 14 21 13 22 fvmptd φ L Z = K X Z 2 nd F Y Z I Z