| Step |
Hyp |
Ref |
Expression |
| 1 |
|
curfval.g |
|- G = ( <. C , D >. curryF F ) |
| 2 |
|
curfval.a |
|- A = ( Base ` C ) |
| 3 |
|
curfval.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
curfval.d |
|- ( ph -> D e. Cat ) |
| 5 |
|
curfval.f |
|- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
| 6 |
|
curfval.b |
|- B = ( Base ` D ) |
| 7 |
|
curf1.x |
|- ( ph -> X e. A ) |
| 8 |
|
curf1.k |
|- K = ( ( 1st ` G ) ` X ) |
| 9 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 10 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
| 11 |
1 2 3 4 5 6 7 8 9 10
|
curf1 |
|- ( ph -> K = <. ( y e. B |-> ( X ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) >. ) |
| 12 |
6
|
fvexi |
|- B e. _V |
| 13 |
12
|
mptex |
|- ( y e. B |-> ( X ( 1st ` F ) y ) ) e. _V |
| 14 |
12 12
|
mpoex |
|- ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) e. _V |
| 15 |
13 14
|
op1std |
|- ( K = <. ( y e. B |-> ( X ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) >. -> ( 1st ` K ) = ( y e. B |-> ( X ( 1st ` F ) y ) ) ) |
| 16 |
11 15
|
syl |
|- ( ph -> ( 1st ` K ) = ( y e. B |-> ( X ( 1st ` F ) y ) ) ) |
| 17 |
13 14
|
op2ndd |
|- ( K = <. ( y e. B |-> ( X ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) >. -> ( 2nd ` K ) = ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) ) |
| 18 |
11 17
|
syl |
|- ( ph -> ( 2nd ` K ) = ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) ) |
| 19 |
16 18
|
opeq12d |
|- ( ph -> <. ( 1st ` K ) , ( 2nd ` K ) >. = <. ( y e. B |-> ( X ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) >. ) |
| 20 |
11 19
|
eqtr4d |
|- ( ph -> K = <. ( 1st ` K ) , ( 2nd ` K ) >. ) |
| 21 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 22 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
| 23 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
| 24 |
|
eqid |
|- ( Id ` E ) = ( Id ` E ) |
| 25 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
| 26 |
|
eqid |
|- ( comp ` E ) = ( comp ` E ) |
| 27 |
|
funcrcl |
|- ( F e. ( ( C Xc. D ) Func E ) -> ( ( C Xc. D ) e. Cat /\ E e. Cat ) ) |
| 28 |
5 27
|
syl |
|- ( ph -> ( ( C Xc. D ) e. Cat /\ E e. Cat ) ) |
| 29 |
28
|
simprd |
|- ( ph -> E e. Cat ) |
| 30 |
|
eqid |
|- ( C Xc. D ) = ( C Xc. D ) |
| 31 |
30 2 6
|
xpcbas |
|- ( A X. B ) = ( Base ` ( C Xc. D ) ) |
| 32 |
|
relfunc |
|- Rel ( ( C Xc. D ) Func E ) |
| 33 |
|
1st2ndbr |
|- ( ( Rel ( ( C Xc. D ) Func E ) /\ F e. ( ( C Xc. D ) Func E ) ) -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
| 34 |
32 5 33
|
sylancr |
|- ( ph -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
| 35 |
31 21 34
|
funcf1 |
|- ( ph -> ( 1st ` F ) : ( A X. B ) --> ( Base ` E ) ) |
| 36 |
35
|
adantr |
|- ( ( ph /\ y e. B ) -> ( 1st ` F ) : ( A X. B ) --> ( Base ` E ) ) |
| 37 |
7
|
adantr |
|- ( ( ph /\ y e. B ) -> X e. A ) |
| 38 |
|
simpr |
|- ( ( ph /\ y e. B ) -> y e. B ) |
| 39 |
36 37 38
|
fovcdmd |
|- ( ( ph /\ y e. B ) -> ( X ( 1st ` F ) y ) e. ( Base ` E ) ) |
| 40 |
16 39
|
fmpt3d |
|- ( ph -> ( 1st ` K ) : B --> ( Base ` E ) ) |
| 41 |
|
eqid |
|- ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) = ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) |
| 42 |
|
ovex |
|- ( y ( Hom ` D ) z ) e. _V |
| 43 |
42
|
mptex |
|- ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) e. _V |
| 44 |
41 43
|
fnmpoi |
|- ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) Fn ( B X. B ) |
| 45 |
18
|
fneq1d |
|- ( ph -> ( ( 2nd ` K ) Fn ( B X. B ) <-> ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) Fn ( B X. B ) ) ) |
| 46 |
44 45
|
mpbiri |
|- ( ph -> ( 2nd ` K ) Fn ( B X. B ) ) |
| 47 |
18
|
oveqd |
|- ( ph -> ( y ( 2nd ` K ) z ) = ( y ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) z ) ) |
| 48 |
41
|
ovmpt4g |
|- ( ( y e. B /\ z e. B /\ ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) e. _V ) -> ( y ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) z ) = ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) |
| 49 |
43 48
|
mp3an3 |
|- ( ( y e. B /\ z e. B ) -> ( y ( y e. B , z e. B |-> ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) z ) = ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) |
| 50 |
47 49
|
sylan9eq |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( y ( 2nd ` K ) z ) = ( g e. ( y ( Hom ` D ) z ) |-> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) |
| 51 |
|
eqid |
|- ( Hom ` ( C Xc. D ) ) = ( Hom ` ( C Xc. D ) ) |
| 52 |
34
|
ad2antrr |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
| 53 |
7
|
ad2antrr |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> X e. A ) |
| 54 |
|
simplrl |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> y e. B ) |
| 55 |
53 54
|
opelxpd |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> <. X , y >. e. ( A X. B ) ) |
| 56 |
|
simplrr |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> z e. B ) |
| 57 |
53 56
|
opelxpd |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> <. X , z >. e. ( A X. B ) ) |
| 58 |
31 51 22 52 55 57
|
funcf2 |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( <. X , y >. ( 2nd ` F ) <. X , z >. ) : ( <. X , y >. ( Hom ` ( C Xc. D ) ) <. X , z >. ) --> ( ( ( 1st ` F ) ` <. X , y >. ) ( Hom ` E ) ( ( 1st ` F ) ` <. X , z >. ) ) ) |
| 59 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 60 |
30 31 59 9 51 55 57
|
xpchom |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( <. X , y >. ( Hom ` ( C Xc. D ) ) <. X , z >. ) = ( ( ( 1st ` <. X , y >. ) ( Hom ` C ) ( 1st ` <. X , z >. ) ) X. ( ( 2nd ` <. X , y >. ) ( Hom ` D ) ( 2nd ` <. X , z >. ) ) ) ) |
| 61 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> C e. Cat ) |
| 62 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> D e. Cat ) |
| 63 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> F e. ( ( C Xc. D ) Func E ) ) |
| 64 |
1 2 61 62 63 6 53 8 54
|
curf11 |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( 1st ` K ) ` y ) = ( X ( 1st ` F ) y ) ) |
| 65 |
|
df-ov |
|- ( X ( 1st ` F ) y ) = ( ( 1st ` F ) ` <. X , y >. ) |
| 66 |
64 65
|
eqtr2di |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( 1st ` F ) ` <. X , y >. ) = ( ( 1st ` K ) ` y ) ) |
| 67 |
1 2 61 62 63 6 53 8 56
|
curf11 |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( 1st ` K ) ` z ) = ( X ( 1st ` F ) z ) ) |
| 68 |
|
df-ov |
|- ( X ( 1st ` F ) z ) = ( ( 1st ` F ) ` <. X , z >. ) |
| 69 |
67 68
|
eqtr2di |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( 1st ` F ) ` <. X , z >. ) = ( ( 1st ` K ) ` z ) ) |
| 70 |
66 69
|
oveq12d |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( ( 1st ` F ) ` <. X , y >. ) ( Hom ` E ) ( ( 1st ` F ) ` <. X , z >. ) ) = ( ( ( 1st ` K ) ` y ) ( Hom ` E ) ( ( 1st ` K ) ` z ) ) ) |
| 71 |
60 70
|
feq23d |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( <. X , y >. ( 2nd ` F ) <. X , z >. ) : ( <. X , y >. ( Hom ` ( C Xc. D ) ) <. X , z >. ) --> ( ( ( 1st ` F ) ` <. X , y >. ) ( Hom ` E ) ( ( 1st ` F ) ` <. X , z >. ) ) <-> ( <. X , y >. ( 2nd ` F ) <. X , z >. ) : ( ( ( 1st ` <. X , y >. ) ( Hom ` C ) ( 1st ` <. X , z >. ) ) X. ( ( 2nd ` <. X , y >. ) ( Hom ` D ) ( 2nd ` <. X , z >. ) ) ) --> ( ( ( 1st ` K ) ` y ) ( Hom ` E ) ( ( 1st ` K ) ` z ) ) ) ) |
| 72 |
58 71
|
mpbid |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( <. X , y >. ( 2nd ` F ) <. X , z >. ) : ( ( ( 1st ` <. X , y >. ) ( Hom ` C ) ( 1st ` <. X , z >. ) ) X. ( ( 2nd ` <. X , y >. ) ( Hom ` D ) ( 2nd ` <. X , z >. ) ) ) --> ( ( ( 1st ` K ) ` y ) ( Hom ` E ) ( ( 1st ` K ) ` z ) ) ) |
| 73 |
2 59 10 61 53
|
catidcl |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( Id ` C ) ` X ) e. ( X ( Hom ` C ) X ) ) |
| 74 |
|
op1stg |
|- ( ( X e. A /\ y e. B ) -> ( 1st ` <. X , y >. ) = X ) |
| 75 |
53 54 74
|
syl2anc |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( 1st ` <. X , y >. ) = X ) |
| 76 |
|
op1stg |
|- ( ( X e. A /\ z e. B ) -> ( 1st ` <. X , z >. ) = X ) |
| 77 |
53 56 76
|
syl2anc |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( 1st ` <. X , z >. ) = X ) |
| 78 |
75 77
|
oveq12d |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( 1st ` <. X , y >. ) ( Hom ` C ) ( 1st ` <. X , z >. ) ) = ( X ( Hom ` C ) X ) ) |
| 79 |
73 78
|
eleqtrrd |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( Id ` C ) ` X ) e. ( ( 1st ` <. X , y >. ) ( Hom ` C ) ( 1st ` <. X , z >. ) ) ) |
| 80 |
|
simpr |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> g e. ( y ( Hom ` D ) z ) ) |
| 81 |
|
op2ndg |
|- ( ( X e. A /\ y e. B ) -> ( 2nd ` <. X , y >. ) = y ) |
| 82 |
53 54 81
|
syl2anc |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( 2nd ` <. X , y >. ) = y ) |
| 83 |
|
op2ndg |
|- ( ( X e. A /\ z e. B ) -> ( 2nd ` <. X , z >. ) = z ) |
| 84 |
53 56 83
|
syl2anc |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( 2nd ` <. X , z >. ) = z ) |
| 85 |
82 84
|
oveq12d |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( 2nd ` <. X , y >. ) ( Hom ` D ) ( 2nd ` <. X , z >. ) ) = ( y ( Hom ` D ) z ) ) |
| 86 |
80 85
|
eleqtrrd |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> g e. ( ( 2nd ` <. X , y >. ) ( Hom ` D ) ( 2nd ` <. X , z >. ) ) ) |
| 87 |
72 79 86
|
fovcdmd |
|- ( ( ( ph /\ ( y e. B /\ z e. B ) ) /\ g e. ( y ( Hom ` D ) z ) ) -> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) e. ( ( ( 1st ` K ) ` y ) ( Hom ` E ) ( ( 1st ` K ) ` z ) ) ) |
| 88 |
50 87
|
fmpt3d |
|- ( ( ph /\ ( y e. B /\ z e. B ) ) -> ( y ( 2nd ` K ) z ) : ( y ( Hom ` D ) z ) --> ( ( ( 1st ` K ) ` y ) ( Hom ` E ) ( ( 1st ` K ) ` z ) ) ) |
| 89 |
3
|
adantr |
|- ( ( ph /\ y e. B ) -> C e. Cat ) |
| 90 |
4
|
adantr |
|- ( ( ph /\ y e. B ) -> D e. Cat ) |
| 91 |
|
eqid |
|- ( Id ` ( C Xc. D ) ) = ( Id ` ( C Xc. D ) ) |
| 92 |
30 89 90 2 6 10 23 91 37 38
|
xpcid |
|- ( ( ph /\ y e. B ) -> ( ( Id ` ( C Xc. D ) ) ` <. X , y >. ) = <. ( ( Id ` C ) ` X ) , ( ( Id ` D ) ` y ) >. ) |
| 93 |
92
|
fveq2d |
|- ( ( ph /\ y e. B ) -> ( ( <. X , y >. ( 2nd ` F ) <. X , y >. ) ` ( ( Id ` ( C Xc. D ) ) ` <. X , y >. ) ) = ( ( <. X , y >. ( 2nd ` F ) <. X , y >. ) ` <. ( ( Id ` C ) ` X ) , ( ( Id ` D ) ` y ) >. ) ) |
| 94 |
|
df-ov |
|- ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , y >. ) ( ( Id ` D ) ` y ) ) = ( ( <. X , y >. ( 2nd ` F ) <. X , y >. ) ` <. ( ( Id ` C ) ` X ) , ( ( Id ` D ) ` y ) >. ) |
| 95 |
93 94
|
eqtr4di |
|- ( ( ph /\ y e. B ) -> ( ( <. X , y >. ( 2nd ` F ) <. X , y >. ) ` ( ( Id ` ( C Xc. D ) ) ` <. X , y >. ) ) = ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , y >. ) ( ( Id ` D ) ` y ) ) ) |
| 96 |
34
|
adantr |
|- ( ( ph /\ y e. B ) -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
| 97 |
|
opelxpi |
|- ( ( X e. A /\ y e. B ) -> <. X , y >. e. ( A X. B ) ) |
| 98 |
7 97
|
sylan |
|- ( ( ph /\ y e. B ) -> <. X , y >. e. ( A X. B ) ) |
| 99 |
31 91 24 96 98
|
funcid |
|- ( ( ph /\ y e. B ) -> ( ( <. X , y >. ( 2nd ` F ) <. X , y >. ) ` ( ( Id ` ( C Xc. D ) ) ` <. X , y >. ) ) = ( ( Id ` E ) ` ( ( 1st ` F ) ` <. X , y >. ) ) ) |
| 100 |
95 99
|
eqtr3d |
|- ( ( ph /\ y e. B ) -> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , y >. ) ( ( Id ` D ) ` y ) ) = ( ( Id ` E ) ` ( ( 1st ` F ) ` <. X , y >. ) ) ) |
| 101 |
5
|
adantr |
|- ( ( ph /\ y e. B ) -> F e. ( ( C Xc. D ) Func E ) ) |
| 102 |
6 9 23 90 38
|
catidcl |
|- ( ( ph /\ y e. B ) -> ( ( Id ` D ) ` y ) e. ( y ( Hom ` D ) y ) ) |
| 103 |
1 2 89 90 101 6 37 8 38 9 10 38 102
|
curf12 |
|- ( ( ph /\ y e. B ) -> ( ( y ( 2nd ` K ) y ) ` ( ( Id ` D ) ` y ) ) = ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , y >. ) ( ( Id ` D ) ` y ) ) ) |
| 104 |
1 2 89 90 101 6 37 8 38
|
curf11 |
|- ( ( ph /\ y e. B ) -> ( ( 1st ` K ) ` y ) = ( X ( 1st ` F ) y ) ) |
| 105 |
104 65
|
eqtrdi |
|- ( ( ph /\ y e. B ) -> ( ( 1st ` K ) ` y ) = ( ( 1st ` F ) ` <. X , y >. ) ) |
| 106 |
105
|
fveq2d |
|- ( ( ph /\ y e. B ) -> ( ( Id ` E ) ` ( ( 1st ` K ) ` y ) ) = ( ( Id ` E ) ` ( ( 1st ` F ) ` <. X , y >. ) ) ) |
| 107 |
100 103 106
|
3eqtr4d |
|- ( ( ph /\ y e. B ) -> ( ( y ( 2nd ` K ) y ) ` ( ( Id ` D ) ` y ) ) = ( ( Id ` E ) ` ( ( 1st ` K ) ` y ) ) ) |
| 108 |
7
|
3ad2ant1 |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> X e. A ) |
| 109 |
|
simp21 |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> y e. B ) |
| 110 |
|
simp22 |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> z e. B ) |
| 111 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 112 |
|
eqid |
|- ( comp ` ( C Xc. D ) ) = ( comp ` ( C Xc. D ) ) |
| 113 |
|
simp23 |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> w e. B ) |
| 114 |
3
|
3ad2ant1 |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> C e. Cat ) |
| 115 |
2 59 10 114 108
|
catidcl |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( Id ` C ) ` X ) e. ( X ( Hom ` C ) X ) ) |
| 116 |
|
simp3l |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> g e. ( y ( Hom ` D ) z ) ) |
| 117 |
|
simp3r |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> h e. ( z ( Hom ` D ) w ) ) |
| 118 |
30 2 6 59 9 108 109 108 110 111 25 112 108 113 115 116 115 117
|
xpcco2 |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( <. ( ( Id ` C ) ` X ) , h >. ( <. <. X , y >. , <. X , z >. >. ( comp ` ( C Xc. D ) ) <. X , w >. ) <. ( ( Id ` C ) ` X ) , g >. ) = <. ( ( ( Id ` C ) ` X ) ( <. X , X >. ( comp ` C ) X ) ( ( Id ` C ) ` X ) ) , ( h ( <. y , z >. ( comp ` D ) w ) g ) >. ) |
| 119 |
2 59 10 114 108 111 108 115
|
catlid |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( ( Id ` C ) ` X ) ( <. X , X >. ( comp ` C ) X ) ( ( Id ` C ) ` X ) ) = ( ( Id ` C ) ` X ) ) |
| 120 |
119
|
opeq1d |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> <. ( ( ( Id ` C ) ` X ) ( <. X , X >. ( comp ` C ) X ) ( ( Id ` C ) ` X ) ) , ( h ( <. y , z >. ( comp ` D ) w ) g ) >. = <. ( ( Id ` C ) ` X ) , ( h ( <. y , z >. ( comp ` D ) w ) g ) >. ) |
| 121 |
118 120
|
eqtrd |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( <. ( ( Id ` C ) ` X ) , h >. ( <. <. X , y >. , <. X , z >. >. ( comp ` ( C Xc. D ) ) <. X , w >. ) <. ( ( Id ` C ) ` X ) , g >. ) = <. ( ( Id ` C ) ` X ) , ( h ( <. y , z >. ( comp ` D ) w ) g ) >. ) |
| 122 |
121
|
fveq2d |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( <. X , y >. ( 2nd ` F ) <. X , w >. ) ` ( <. ( ( Id ` C ) ` X ) , h >. ( <. <. X , y >. , <. X , z >. >. ( comp ` ( C Xc. D ) ) <. X , w >. ) <. ( ( Id ` C ) ` X ) , g >. ) ) = ( ( <. X , y >. ( 2nd ` F ) <. X , w >. ) ` <. ( ( Id ` C ) ` X ) , ( h ( <. y , z >. ( comp ` D ) w ) g ) >. ) ) |
| 123 |
|
df-ov |
|- ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , w >. ) ( h ( <. y , z >. ( comp ` D ) w ) g ) ) = ( ( <. X , y >. ( 2nd ` F ) <. X , w >. ) ` <. ( ( Id ` C ) ` X ) , ( h ( <. y , z >. ( comp ` D ) w ) g ) >. ) |
| 124 |
122 123
|
eqtr4di |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( <. X , y >. ( 2nd ` F ) <. X , w >. ) ` ( <. ( ( Id ` C ) ` X ) , h >. ( <. <. X , y >. , <. X , z >. >. ( comp ` ( C Xc. D ) ) <. X , w >. ) <. ( ( Id ` C ) ` X ) , g >. ) ) = ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , w >. ) ( h ( <. y , z >. ( comp ` D ) w ) g ) ) ) |
| 125 |
34
|
3ad2ant1 |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( 1st ` F ) ( ( C Xc. D ) Func E ) ( 2nd ` F ) ) |
| 126 |
108 109
|
opelxpd |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> <. X , y >. e. ( A X. B ) ) |
| 127 |
108 110
|
opelxpd |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> <. X , z >. e. ( A X. B ) ) |
| 128 |
108 113
|
opelxpd |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> <. X , w >. e. ( A X. B ) ) |
| 129 |
115 116
|
opelxpd |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> <. ( ( Id ` C ) ` X ) , g >. e. ( ( X ( Hom ` C ) X ) X. ( y ( Hom ` D ) z ) ) ) |
| 130 |
30 2 6 59 9 108 109 108 110 51
|
xpchom2 |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( <. X , y >. ( Hom ` ( C Xc. D ) ) <. X , z >. ) = ( ( X ( Hom ` C ) X ) X. ( y ( Hom ` D ) z ) ) ) |
| 131 |
129 130
|
eleqtrrd |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> <. ( ( Id ` C ) ` X ) , g >. e. ( <. X , y >. ( Hom ` ( C Xc. D ) ) <. X , z >. ) ) |
| 132 |
115 117
|
opelxpd |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> <. ( ( Id ` C ) ` X ) , h >. e. ( ( X ( Hom ` C ) X ) X. ( z ( Hom ` D ) w ) ) ) |
| 133 |
30 2 6 59 9 108 110 108 113 51
|
xpchom2 |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( <. X , z >. ( Hom ` ( C Xc. D ) ) <. X , w >. ) = ( ( X ( Hom ` C ) X ) X. ( z ( Hom ` D ) w ) ) ) |
| 134 |
132 133
|
eleqtrrd |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> <. ( ( Id ` C ) ` X ) , h >. e. ( <. X , z >. ( Hom ` ( C Xc. D ) ) <. X , w >. ) ) |
| 135 |
31 51 112 26 125 126 127 128 131 134
|
funcco |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( <. X , y >. ( 2nd ` F ) <. X , w >. ) ` ( <. ( ( Id ` C ) ` X ) , h >. ( <. <. X , y >. , <. X , z >. >. ( comp ` ( C Xc. D ) ) <. X , w >. ) <. ( ( Id ` C ) ` X ) , g >. ) ) = ( ( ( <. X , z >. ( 2nd ` F ) <. X , w >. ) ` <. ( ( Id ` C ) ` X ) , h >. ) ( <. ( ( 1st ` F ) ` <. X , y >. ) , ( ( 1st ` F ) ` <. X , z >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. X , w >. ) ) ( ( <. X , y >. ( 2nd ` F ) <. X , z >. ) ` <. ( ( Id ` C ) ` X ) , g >. ) ) ) |
| 136 |
124 135
|
eqtr3d |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , w >. ) ( h ( <. y , z >. ( comp ` D ) w ) g ) ) = ( ( ( <. X , z >. ( 2nd ` F ) <. X , w >. ) ` <. ( ( Id ` C ) ` X ) , h >. ) ( <. ( ( 1st ` F ) ` <. X , y >. ) , ( ( 1st ` F ) ` <. X , z >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. X , w >. ) ) ( ( <. X , y >. ( 2nd ` F ) <. X , z >. ) ` <. ( ( Id ` C ) ` X ) , g >. ) ) ) |
| 137 |
4
|
3ad2ant1 |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> D e. Cat ) |
| 138 |
5
|
3ad2ant1 |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> F e. ( ( C Xc. D ) Func E ) ) |
| 139 |
6 9 25 137 109 110 113 116 117
|
catcocl |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( h ( <. y , z >. ( comp ` D ) w ) g ) e. ( y ( Hom ` D ) w ) ) |
| 140 |
1 2 114 137 138 6 108 8 109 9 10 113 139
|
curf12 |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( y ( 2nd ` K ) w ) ` ( h ( <. y , z >. ( comp ` D ) w ) g ) ) = ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , w >. ) ( h ( <. y , z >. ( comp ` D ) w ) g ) ) ) |
| 141 |
1 2 114 137 138 6 108 8 109
|
curf11 |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` K ) ` y ) = ( X ( 1st ` F ) y ) ) |
| 142 |
141 65
|
eqtrdi |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` K ) ` y ) = ( ( 1st ` F ) ` <. X , y >. ) ) |
| 143 |
1 2 114 137 138 6 108 8 110
|
curf11 |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` K ) ` z ) = ( X ( 1st ` F ) z ) ) |
| 144 |
143 68
|
eqtrdi |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` K ) ` z ) = ( ( 1st ` F ) ` <. X , z >. ) ) |
| 145 |
142 144
|
opeq12d |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> <. ( ( 1st ` K ) ` y ) , ( ( 1st ` K ) ` z ) >. = <. ( ( 1st ` F ) ` <. X , y >. ) , ( ( 1st ` F ) ` <. X , z >. ) >. ) |
| 146 |
1 2 114 137 138 6 108 8 113
|
curf11 |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` K ) ` w ) = ( X ( 1st ` F ) w ) ) |
| 147 |
|
df-ov |
|- ( X ( 1st ` F ) w ) = ( ( 1st ` F ) ` <. X , w >. ) |
| 148 |
146 147
|
eqtrdi |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( 1st ` K ) ` w ) = ( ( 1st ` F ) ` <. X , w >. ) ) |
| 149 |
145 148
|
oveq12d |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( <. ( ( 1st ` K ) ` y ) , ( ( 1st ` K ) ` z ) >. ( comp ` E ) ( ( 1st ` K ) ` w ) ) = ( <. ( ( 1st ` F ) ` <. X , y >. ) , ( ( 1st ` F ) ` <. X , z >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. X , w >. ) ) ) |
| 150 |
1 2 114 137 138 6 108 8 110 9 10 113 117
|
curf12 |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( z ( 2nd ` K ) w ) ` h ) = ( ( ( Id ` C ) ` X ) ( <. X , z >. ( 2nd ` F ) <. X , w >. ) h ) ) |
| 151 |
|
df-ov |
|- ( ( ( Id ` C ) ` X ) ( <. X , z >. ( 2nd ` F ) <. X , w >. ) h ) = ( ( <. X , z >. ( 2nd ` F ) <. X , w >. ) ` <. ( ( Id ` C ) ` X ) , h >. ) |
| 152 |
150 151
|
eqtrdi |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( z ( 2nd ` K ) w ) ` h ) = ( ( <. X , z >. ( 2nd ` F ) <. X , w >. ) ` <. ( ( Id ` C ) ` X ) , h >. ) ) |
| 153 |
1 2 114 137 138 6 108 8 109 9 10 110 116
|
curf12 |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( y ( 2nd ` K ) z ) ` g ) = ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) |
| 154 |
|
df-ov |
|- ( ( ( Id ` C ) ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) = ( ( <. X , y >. ( 2nd ` F ) <. X , z >. ) ` <. ( ( Id ` C ) ` X ) , g >. ) |
| 155 |
153 154
|
eqtrdi |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( y ( 2nd ` K ) z ) ` g ) = ( ( <. X , y >. ( 2nd ` F ) <. X , z >. ) ` <. ( ( Id ` C ) ` X ) , g >. ) ) |
| 156 |
149 152 155
|
oveq123d |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( ( z ( 2nd ` K ) w ) ` h ) ( <. ( ( 1st ` K ) ` y ) , ( ( 1st ` K ) ` z ) >. ( comp ` E ) ( ( 1st ` K ) ` w ) ) ( ( y ( 2nd ` K ) z ) ` g ) ) = ( ( ( <. X , z >. ( 2nd ` F ) <. X , w >. ) ` <. ( ( Id ` C ) ` X ) , h >. ) ( <. ( ( 1st ` F ) ` <. X , y >. ) , ( ( 1st ` F ) ` <. X , z >. ) >. ( comp ` E ) ( ( 1st ` F ) ` <. X , w >. ) ) ( ( <. X , y >. ( 2nd ` F ) <. X , z >. ) ` <. ( ( Id ` C ) ` X ) , g >. ) ) ) |
| 157 |
136 140 156
|
3eqtr4d |
|- ( ( ph /\ ( y e. B /\ z e. B /\ w e. B ) /\ ( g e. ( y ( Hom ` D ) z ) /\ h e. ( z ( Hom ` D ) w ) ) ) -> ( ( y ( 2nd ` K ) w ) ` ( h ( <. y , z >. ( comp ` D ) w ) g ) ) = ( ( ( z ( 2nd ` K ) w ) ` h ) ( <. ( ( 1st ` K ) ` y ) , ( ( 1st ` K ) ` z ) >. ( comp ` E ) ( ( 1st ` K ) ` w ) ) ( ( y ( 2nd ` K ) z ) ` g ) ) ) |
| 158 |
6 21 9 22 23 24 25 26 4 29 40 46 88 107 157
|
isfuncd |
|- ( ph -> ( 1st ` K ) ( D Func E ) ( 2nd ` K ) ) |
| 159 |
|
df-br |
|- ( ( 1st ` K ) ( D Func E ) ( 2nd ` K ) <-> <. ( 1st ` K ) , ( 2nd ` K ) >. e. ( D Func E ) ) |
| 160 |
158 159
|
sylib |
|- ( ph -> <. ( 1st ` K ) , ( 2nd ` K ) >. e. ( D Func E ) ) |
| 161 |
20 160
|
eqeltrd |
|- ( ph -> K e. ( D Func E ) ) |