Step |
Hyp |
Ref |
Expression |
1 |
|
curfval.g |
|- G = ( <. C , D >. curryF F ) |
2 |
|
curfval.a |
|- A = ( Base ` C ) |
3 |
|
curfval.c |
|- ( ph -> C e. Cat ) |
4 |
|
curfval.d |
|- ( ph -> D e. Cat ) |
5 |
|
curfval.f |
|- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
6 |
|
curfval.b |
|- B = ( Base ` D ) |
7 |
|
curf1.x |
|- ( ph -> X e. A ) |
8 |
|
curf1.k |
|- K = ( ( 1st ` G ) ` X ) |
9 |
|
curf1.j |
|- J = ( Hom ` D ) |
10 |
|
curf1.1 |
|- .1. = ( Id ` C ) |
11 |
1 2 3 4 5 6 9 10
|
curf1fval |
|- ( ph -> ( 1st ` G ) = ( x e. A |-> <. ( y e. B |-> ( x ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. ) ) |
12 |
|
simpr |
|- ( ( ph /\ x = X ) -> x = X ) |
13 |
12
|
oveq1d |
|- ( ( ph /\ x = X ) -> ( x ( 1st ` F ) y ) = ( X ( 1st ` F ) y ) ) |
14 |
13
|
mpteq2dv |
|- ( ( ph /\ x = X ) -> ( y e. B |-> ( x ( 1st ` F ) y ) ) = ( y e. B |-> ( X ( 1st ` F ) y ) ) ) |
15 |
|
simp1r |
|- ( ( ( ph /\ x = X ) /\ y e. B /\ z e. B ) -> x = X ) |
16 |
15
|
opeq1d |
|- ( ( ( ph /\ x = X ) /\ y e. B /\ z e. B ) -> <. x , y >. = <. X , y >. ) |
17 |
15
|
opeq1d |
|- ( ( ( ph /\ x = X ) /\ y e. B /\ z e. B ) -> <. x , z >. = <. X , z >. ) |
18 |
16 17
|
oveq12d |
|- ( ( ( ph /\ x = X ) /\ y e. B /\ z e. B ) -> ( <. x , y >. ( 2nd ` F ) <. x , z >. ) = ( <. X , y >. ( 2nd ` F ) <. X , z >. ) ) |
19 |
15
|
fveq2d |
|- ( ( ( ph /\ x = X ) /\ y e. B /\ z e. B ) -> ( .1. ` x ) = ( .1. ` X ) ) |
20 |
|
eqidd |
|- ( ( ( ph /\ x = X ) /\ y e. B /\ z e. B ) -> g = g ) |
21 |
18 19 20
|
oveq123d |
|- ( ( ( ph /\ x = X ) /\ y e. B /\ z e. B ) -> ( ( .1. ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) = ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) |
22 |
21
|
mpteq2dv |
|- ( ( ( ph /\ x = X ) /\ y e. B /\ z e. B ) -> ( g e. ( y J z ) |-> ( ( .1. ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) = ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) |
23 |
22
|
mpoeq3dva |
|- ( ( ph /\ x = X ) -> ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) = ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) ) |
24 |
14 23
|
opeq12d |
|- ( ( ph /\ x = X ) -> <. ( y e. B |-> ( x ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` x ) ( <. x , y >. ( 2nd ` F ) <. x , z >. ) g ) ) ) >. = <. ( y e. B |-> ( X ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) >. ) |
25 |
|
opex |
|- <. ( y e. B |-> ( X ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) >. e. _V |
26 |
25
|
a1i |
|- ( ph -> <. ( y e. B |-> ( X ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) >. e. _V ) |
27 |
11 24 7 26
|
fvmptd |
|- ( ph -> ( ( 1st ` G ) ` X ) = <. ( y e. B |-> ( X ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) >. ) |
28 |
8 27
|
eqtrid |
|- ( ph -> K = <. ( y e. B |-> ( X ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) >. ) |