Step |
Hyp |
Ref |
Expression |
1 |
|
curfval.g |
|- G = ( <. C , D >. curryF F ) |
2 |
|
curfval.a |
|- A = ( Base ` C ) |
3 |
|
curfval.c |
|- ( ph -> C e. Cat ) |
4 |
|
curfval.d |
|- ( ph -> D e. Cat ) |
5 |
|
curfval.f |
|- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
6 |
|
curfval.b |
|- B = ( Base ` D ) |
7 |
|
curf1.x |
|- ( ph -> X e. A ) |
8 |
|
curf1.k |
|- K = ( ( 1st ` G ) ` X ) |
9 |
|
curf11.y |
|- ( ph -> Y e. B ) |
10 |
|
curf12.j |
|- J = ( Hom ` D ) |
11 |
|
curf12.1 |
|- .1. = ( Id ` C ) |
12 |
|
curf12.y |
|- ( ph -> Z e. B ) |
13 |
|
curf12.g |
|- ( ph -> H e. ( Y J Z ) ) |
14 |
1 2 3 4 5 6 7 8 10 11
|
curf1 |
|- ( ph -> K = <. ( y e. B |-> ( X ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) >. ) |
15 |
6
|
fvexi |
|- B e. _V |
16 |
15
|
mptex |
|- ( y e. B |-> ( X ( 1st ` F ) y ) ) e. _V |
17 |
15 15
|
mpoex |
|- ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) e. _V |
18 |
16 17
|
op2ndd |
|- ( K = <. ( y e. B |-> ( X ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) >. -> ( 2nd ` K ) = ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) ) |
19 |
14 18
|
syl |
|- ( ph -> ( 2nd ` K ) = ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) ) |
20 |
12
|
adantr |
|- ( ( ph /\ y = Y ) -> Z e. B ) |
21 |
|
ovex |
|- ( y J z ) e. _V |
22 |
21
|
mptex |
|- ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) e. _V |
23 |
22
|
a1i |
|- ( ( ph /\ ( y = Y /\ z = Z ) ) -> ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) e. _V ) |
24 |
13
|
adantr |
|- ( ( ph /\ ( y = Y /\ z = Z ) ) -> H e. ( Y J Z ) ) |
25 |
|
simprl |
|- ( ( ph /\ ( y = Y /\ z = Z ) ) -> y = Y ) |
26 |
|
simprr |
|- ( ( ph /\ ( y = Y /\ z = Z ) ) -> z = Z ) |
27 |
25 26
|
oveq12d |
|- ( ( ph /\ ( y = Y /\ z = Z ) ) -> ( y J z ) = ( Y J Z ) ) |
28 |
24 27
|
eleqtrrd |
|- ( ( ph /\ ( y = Y /\ z = Z ) ) -> H e. ( y J z ) ) |
29 |
|
ovexd |
|- ( ( ( ph /\ ( y = Y /\ z = Z ) ) /\ g = H ) -> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) e. _V ) |
30 |
|
simplrl |
|- ( ( ( ph /\ ( y = Y /\ z = Z ) ) /\ g = H ) -> y = Y ) |
31 |
30
|
opeq2d |
|- ( ( ( ph /\ ( y = Y /\ z = Z ) ) /\ g = H ) -> <. X , y >. = <. X , Y >. ) |
32 |
|
simplrr |
|- ( ( ( ph /\ ( y = Y /\ z = Z ) ) /\ g = H ) -> z = Z ) |
33 |
32
|
opeq2d |
|- ( ( ( ph /\ ( y = Y /\ z = Z ) ) /\ g = H ) -> <. X , z >. = <. X , Z >. ) |
34 |
31 33
|
oveq12d |
|- ( ( ( ph /\ ( y = Y /\ z = Z ) ) /\ g = H ) -> ( <. X , y >. ( 2nd ` F ) <. X , z >. ) = ( <. X , Y >. ( 2nd ` F ) <. X , Z >. ) ) |
35 |
|
eqidd |
|- ( ( ( ph /\ ( y = Y /\ z = Z ) ) /\ g = H ) -> ( .1. ` X ) = ( .1. ` X ) ) |
36 |
|
simpr |
|- ( ( ( ph /\ ( y = Y /\ z = Z ) ) /\ g = H ) -> g = H ) |
37 |
34 35 36
|
oveq123d |
|- ( ( ( ph /\ ( y = Y /\ z = Z ) ) /\ g = H ) -> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) = ( ( .1. ` X ) ( <. X , Y >. ( 2nd ` F ) <. X , Z >. ) H ) ) |
38 |
28 29 37
|
fvmptdv2 |
|- ( ( ph /\ ( y = Y /\ z = Z ) ) -> ( ( Y ( 2nd ` K ) Z ) = ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) -> ( ( Y ( 2nd ` K ) Z ) ` H ) = ( ( .1. ` X ) ( <. X , Y >. ( 2nd ` F ) <. X , Z >. ) H ) ) ) |
39 |
9 20 23 38
|
ovmpodv |
|- ( ph -> ( ( 2nd ` K ) = ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) -> ( ( Y ( 2nd ` K ) Z ) ` H ) = ( ( .1. ` X ) ( <. X , Y >. ( 2nd ` F ) <. X , Z >. ) H ) ) ) |
40 |
19 39
|
mpd |
|- ( ph -> ( ( Y ( 2nd ` K ) Z ) ` H ) = ( ( .1. ` X ) ( <. X , Y >. ( 2nd ` F ) <. X , Z >. ) H ) ) |