Step |
Hyp |
Ref |
Expression |
1 |
|
curfval.g |
⊢ 𝐺 = ( ⟨ 𝐶 , 𝐷 ⟩ curryF 𝐹 ) |
2 |
|
curfval.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
3 |
|
curfval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
curfval.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
5 |
|
curfval.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
6 |
|
curfval.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
7 |
|
curf1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
8 |
|
curf1.k |
⊢ 𝐾 = ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) |
9 |
|
curf11.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
10 |
|
curf12.j |
⊢ 𝐽 = ( Hom ‘ 𝐷 ) |
11 |
|
curf12.1 |
⊢ 1 = ( Id ‘ 𝐶 ) |
12 |
|
curf12.y |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
13 |
|
curf12.g |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑌 𝐽 𝑍 ) ) |
14 |
1 2 3 4 5 6 7 8 10 11
|
curf1 |
⊢ ( 𝜑 → 𝐾 = ⟨ ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( ⟨ 𝑋 , 𝑦 ⟩ ( 2nd ‘ 𝐹 ) ⟨ 𝑋 , 𝑧 ⟩ ) 𝑔 ) ) ) ⟩ ) |
15 |
6
|
fvexi |
⊢ 𝐵 ∈ V |
16 |
15
|
mptex |
⊢ ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ 𝐹 ) 𝑦 ) ) ∈ V |
17 |
15 15
|
mpoex |
⊢ ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( ⟨ 𝑋 , 𝑦 ⟩ ( 2nd ‘ 𝐹 ) ⟨ 𝑋 , 𝑧 ⟩ ) 𝑔 ) ) ) ∈ V |
18 |
16 17
|
op2ndd |
⊢ ( 𝐾 = ⟨ ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( ⟨ 𝑋 , 𝑦 ⟩ ( 2nd ‘ 𝐹 ) ⟨ 𝑋 , 𝑧 ⟩ ) 𝑔 ) ) ) ⟩ → ( 2nd ‘ 𝐾 ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( ⟨ 𝑋 , 𝑦 ⟩ ( 2nd ‘ 𝐹 ) ⟨ 𝑋 , 𝑧 ⟩ ) 𝑔 ) ) ) ) |
19 |
14 18
|
syl |
⊢ ( 𝜑 → ( 2nd ‘ 𝐾 ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( ⟨ 𝑋 , 𝑦 ⟩ ( 2nd ‘ 𝐹 ) ⟨ 𝑋 , 𝑧 ⟩ ) 𝑔 ) ) ) ) |
20 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝑌 ) → 𝑍 ∈ 𝐵 ) |
21 |
|
ovex |
⊢ ( 𝑦 𝐽 𝑧 ) ∈ V |
22 |
21
|
mptex |
⊢ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( ⟨ 𝑋 , 𝑦 ⟩ ( 2nd ‘ 𝐹 ) ⟨ 𝑋 , 𝑧 ⟩ ) 𝑔 ) ) ∈ V |
23 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) → ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( ⟨ 𝑋 , 𝑦 ⟩ ( 2nd ‘ 𝐹 ) ⟨ 𝑋 , 𝑧 ⟩ ) 𝑔 ) ) ∈ V ) |
24 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) → 𝐻 ∈ ( 𝑌 𝐽 𝑍 ) ) |
25 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) → 𝑦 = 𝑌 ) |
26 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) → 𝑧 = 𝑍 ) |
27 |
25 26
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) → ( 𝑦 𝐽 𝑧 ) = ( 𝑌 𝐽 𝑍 ) ) |
28 |
24 27
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) → 𝐻 ∈ ( 𝑦 𝐽 𝑧 ) ) |
29 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) ∧ 𝑔 = 𝐻 ) → ( ( 1 ‘ 𝑋 ) ( ⟨ 𝑋 , 𝑦 ⟩ ( 2nd ‘ 𝐹 ) ⟨ 𝑋 , 𝑧 ⟩ ) 𝑔 ) ∈ V ) |
30 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) ∧ 𝑔 = 𝐻 ) → 𝑦 = 𝑌 ) |
31 |
30
|
opeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) ∧ 𝑔 = 𝐻 ) → ⟨ 𝑋 , 𝑦 ⟩ = ⟨ 𝑋 , 𝑌 ⟩ ) |
32 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) ∧ 𝑔 = 𝐻 ) → 𝑧 = 𝑍 ) |
33 |
32
|
opeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) ∧ 𝑔 = 𝐻 ) → ⟨ 𝑋 , 𝑧 ⟩ = ⟨ 𝑋 , 𝑍 ⟩ ) |
34 |
31 33
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) ∧ 𝑔 = 𝐻 ) → ( ⟨ 𝑋 , 𝑦 ⟩ ( 2nd ‘ 𝐹 ) ⟨ 𝑋 , 𝑧 ⟩ ) = ( ⟨ 𝑋 , 𝑌 ⟩ ( 2nd ‘ 𝐹 ) ⟨ 𝑋 , 𝑍 ⟩ ) ) |
35 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) ∧ 𝑔 = 𝐻 ) → ( 1 ‘ 𝑋 ) = ( 1 ‘ 𝑋 ) ) |
36 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) ∧ 𝑔 = 𝐻 ) → 𝑔 = 𝐻 ) |
37 |
34 35 36
|
oveq123d |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) ∧ 𝑔 = 𝐻 ) → ( ( 1 ‘ 𝑋 ) ( ⟨ 𝑋 , 𝑦 ⟩ ( 2nd ‘ 𝐹 ) ⟨ 𝑋 , 𝑧 ⟩ ) 𝑔 ) = ( ( 1 ‘ 𝑋 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( 2nd ‘ 𝐹 ) ⟨ 𝑋 , 𝑍 ⟩ ) 𝐻 ) ) |
38 |
28 29 37
|
fvmptdv2 |
⊢ ( ( 𝜑 ∧ ( 𝑦 = 𝑌 ∧ 𝑧 = 𝑍 ) ) → ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑍 ) = ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( ⟨ 𝑋 , 𝑦 ⟩ ( 2nd ‘ 𝐹 ) ⟨ 𝑋 , 𝑧 ⟩ ) 𝑔 ) ) → ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑍 ) ‘ 𝐻 ) = ( ( 1 ‘ 𝑋 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( 2nd ‘ 𝐹 ) ⟨ 𝑋 , 𝑍 ⟩ ) 𝐻 ) ) ) |
39 |
9 20 23 38
|
ovmpodv |
⊢ ( 𝜑 → ( ( 2nd ‘ 𝐾 ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( ⟨ 𝑋 , 𝑦 ⟩ ( 2nd ‘ 𝐹 ) ⟨ 𝑋 , 𝑧 ⟩ ) 𝑔 ) ) ) → ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑍 ) ‘ 𝐻 ) = ( ( 1 ‘ 𝑋 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( 2nd ‘ 𝐹 ) ⟨ 𝑋 , 𝑍 ⟩ ) 𝐻 ) ) ) |
40 |
19 39
|
mpd |
⊢ ( 𝜑 → ( ( 𝑌 ( 2nd ‘ 𝐾 ) 𝑍 ) ‘ 𝐻 ) = ( ( 1 ‘ 𝑋 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( 2nd ‘ 𝐹 ) ⟨ 𝑋 , 𝑍 ⟩ ) 𝐻 ) ) |