Metamath Proof Explorer


Theorem yon2

Description: Value of the Yoneda embedding at a morphism. (Contributed by Mario Carneiro, 17-Jan-2017)

Ref Expression
Hypotheses yon11.y Y=YonC
yon11.b B=BaseC
yon11.c φCCat
yon11.p φXB
yon11.h H=HomC
yon11.z φZB
yon12.x ·˙=compC
yon12.w φWB
yon2.f φFXHZ
yon2.g φGWHX
Assertion yon2 φX2ndYZFWG=FWX·˙ZG

Proof

Step Hyp Ref Expression
1 yon11.y Y=YonC
2 yon11.b B=BaseC
3 yon11.c φCCat
4 yon11.p φXB
5 yon11.h H=HomC
6 yon11.z φZB
7 yon12.x ·˙=compC
8 yon12.w φWB
9 yon2.f φFXHZ
10 yon2.g φGWHX
11 eqid oppCatC=oppCatC
12 eqid HomFoppCatC=HomFoppCatC
13 1 3 11 12 yonval φY=CoppCatCcurryFHomFoppCatC
14 13 fveq2d φ2ndY=2ndCoppCatCcurryFHomFoppCatC
15 14 oveqd φX2ndYZ=X2ndCoppCatCcurryFHomFoppCatCZ
16 15 fveq1d φX2ndYZF=X2ndCoppCatCcurryFHomFoppCatCZF
17 16 fveq1d φX2ndYZFW=X2ndCoppCatCcurryFHomFoppCatCZFW
18 eqid CoppCatCcurryFHomFoppCatC=CoppCatCcurryFHomFoppCatC
19 11 oppccat CCatoppCatCCat
20 3 19 syl φoppCatCCat
21 eqid SetCatranHom𝑓C=SetCatranHom𝑓C
22 fvex Hom𝑓CV
23 22 rnex ranHom𝑓CV
24 23 a1i φranHom𝑓CV
25 ssidd φranHom𝑓CranHom𝑓C
26 11 12 21 3 24 25 oppchofcl φHomFoppCatCC×coppCatCFuncSetCatranHom𝑓C
27 11 2 oppcbas B=BaseoppCatC
28 eqid IdoppCatC=IdoppCatC
29 eqid X2ndCoppCatCcurryFHomFoppCatCZF=X2ndCoppCatCcurryFHomFoppCatCZF
30 18 2 3 20 26 27 5 28 4 6 9 29 8 curf2val φX2ndCoppCatCcurryFHomFoppCatCZFW=FXW2ndHomFoppCatCZWIdoppCatCW
31 17 30 eqtrd φX2ndYZFW=FXW2ndHomFoppCatCZWIdoppCatCW
32 31 fveq1d φX2ndYZFWG=FXW2ndHomFoppCatCZWIdoppCatCWG
33 eqid HomoppCatC=HomoppCatC
34 eqid compoppCatC=compoppCatC
35 5 11 oppchom ZHomoppCatCX=XHZ
36 9 35 eleqtrrdi φFZHomoppCatCX
37 27 33 28 20 8 catidcl φIdoppCatCWWHomoppCatCW
38 5 11 oppchom XHomoppCatCW=WHX
39 10 38 eleqtrrdi φGXHomoppCatCW
40 12 20 27 33 4 8 6 8 34 36 37 39 hof2 φFXW2ndHomFoppCatCZWIdoppCatCWG=IdoppCatCWXWcompoppCatCWGZXcompoppCatCWF
41 27 33 28 20 4 34 8 39 catlid φIdoppCatCWXWcompoppCatCWG=G
42 41 oveq1d φIdoppCatCWXWcompoppCatCWGZXcompoppCatCWF=GZXcompoppCatCWF
43 2 7 11 6 4 8 oppcco φGZXcompoppCatCWF=FWX·˙ZG
44 42 43 eqtrd φIdoppCatCWXWcompoppCatCWGZXcompoppCatCWF=FWX·˙ZG
45 32 40 44 3eqtrd φX2ndYZFWG=FWX·˙ZG