Metamath Proof Explorer


Theorem yon2

Description: Value of the Yoneda embedding at a morphism. (Contributed by Mario Carneiro, 17-Jan-2017)

Ref Expression
Hypotheses yon11.y Y = Yon C
yon11.b B = Base C
yon11.c φ C Cat
yon11.p φ X B
yon11.h H = Hom C
yon11.z φ Z B
yon12.x · ˙ = comp C
yon12.w φ W B
yon2.f φ F X H Z
yon2.g φ G W H X
Assertion yon2 φ X 2 nd Y Z F W G = F W X · ˙ Z G

Proof

Step Hyp Ref Expression
1 yon11.y Y = Yon C
2 yon11.b B = Base C
3 yon11.c φ C Cat
4 yon11.p φ X B
5 yon11.h H = Hom C
6 yon11.z φ Z B
7 yon12.x · ˙ = comp C
8 yon12.w φ W B
9 yon2.f φ F X H Z
10 yon2.g φ G W H X
11 eqid oppCat C = oppCat C
12 eqid Hom F oppCat C = Hom F oppCat C
13 1 3 11 12 yonval φ Y = C oppCat C curry F Hom F oppCat C
14 13 fveq2d φ 2 nd Y = 2 nd C oppCat C curry F Hom F oppCat C
15 14 oveqd φ X 2 nd Y Z = X 2 nd C oppCat C curry F Hom F oppCat C Z
16 15 fveq1d φ X 2 nd Y Z F = X 2 nd C oppCat C curry F Hom F oppCat C Z F
17 16 fveq1d φ X 2 nd Y Z F W = X 2 nd C oppCat C curry F Hom F oppCat C Z F W
18 eqid C oppCat C curry F Hom F oppCat C = C oppCat C curry F Hom F oppCat C
19 11 oppccat C Cat oppCat C Cat
20 3 19 syl φ oppCat C Cat
21 eqid SetCat ran Hom 𝑓 C = SetCat ran Hom 𝑓 C
22 fvex Hom 𝑓 C V
23 22 rnex ran Hom 𝑓 C V
24 23 a1i φ ran Hom 𝑓 C V
25 ssidd φ ran Hom 𝑓 C ran Hom 𝑓 C
26 11 12 21 3 24 25 oppchofcl φ Hom F oppCat C C × c oppCat C Func SetCat ran Hom 𝑓 C
27 11 2 oppcbas B = Base oppCat C
28 eqid Id oppCat C = Id oppCat C
29 eqid X 2 nd C oppCat C curry F Hom F oppCat C Z F = X 2 nd C oppCat C curry F Hom F oppCat C Z F
30 18 2 3 20 26 27 5 28 4 6 9 29 8 curf2val φ X 2 nd C oppCat C curry F Hom F oppCat C Z F W = F X W 2 nd Hom F oppCat C Z W Id oppCat C W
31 17 30 eqtrd φ X 2 nd Y Z F W = F X W 2 nd Hom F oppCat C Z W Id oppCat C W
32 31 fveq1d φ X 2 nd Y Z F W G = F X W 2 nd Hom F oppCat C Z W Id oppCat C W G
33 eqid Hom oppCat C = Hom oppCat C
34 eqid comp oppCat C = comp oppCat C
35 5 11 oppchom Z Hom oppCat C X = X H Z
36 9 35 eleqtrrdi φ F Z Hom oppCat C X
37 27 33 28 20 8 catidcl φ Id oppCat C W W Hom oppCat C W
38 5 11 oppchom X Hom oppCat C W = W H X
39 10 38 eleqtrrdi φ G X Hom oppCat C W
40 12 20 27 33 4 8 6 8 34 36 37 39 hof2 φ F X W 2 nd Hom F oppCat C Z W Id oppCat C W G = Id oppCat C W X W comp oppCat C W G Z X comp oppCat C W F
41 27 33 28 20 4 34 8 39 catlid φ Id oppCat C W X W comp oppCat C W G = G
42 41 oveq1d φ Id oppCat C W X W comp oppCat C W G Z X comp oppCat C W F = G Z X comp oppCat C W F
43 2 7 11 6 4 8 oppcco φ G Z X comp oppCat C W F = F W X · ˙ Z G
44 42 43 eqtrd φ Id oppCat C W X W comp oppCat C W G Z X comp oppCat C W F = F W X · ˙ Z G
45 32 40 44 3eqtrd φ X 2 nd Y Z F W G = F W X · ˙ Z G