Metamath Proof Explorer


Theorem yon12

Description: Value of the Yoneda embedding at a morphism. The partially evaluated Yoneda embedding is also the contravariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017)

Ref Expression
Hypotheses yon11.y Y=YonC
yon11.b B=BaseC
yon11.c φCCat
yon11.p φXB
yon11.h H=HomC
yon11.z φZB
yon12.x ·˙=compC
yon12.w φWB
yon12.f φFWHZ
yon12.g φGZHX
Assertion yon12 φZ2nd1stYXWFG=GWZ·˙XF

Proof

Step Hyp Ref Expression
1 yon11.y Y=YonC
2 yon11.b B=BaseC
3 yon11.c φCCat
4 yon11.p φXB
5 yon11.h H=HomC
6 yon11.z φZB
7 yon12.x ·˙=compC
8 yon12.w φWB
9 yon12.f φFWHZ
10 yon12.g φGZHX
11 eqid oppCatC=oppCatC
12 eqid HomFoppCatC=HomFoppCatC
13 1 3 11 12 yonval φY=CoppCatCcurryFHomFoppCatC
14 13 fveq2d φ1stY=1stCoppCatCcurryFHomFoppCatC
15 14 fveq1d φ1stYX=1stCoppCatCcurryFHomFoppCatCX
16 15 fveq2d φ2nd1stYX=2nd1stCoppCatCcurryFHomFoppCatCX
17 16 oveqd φZ2nd1stYXW=Z2nd1stCoppCatCcurryFHomFoppCatCXW
18 17 fveq1d φZ2nd1stYXWF=Z2nd1stCoppCatCcurryFHomFoppCatCXWF
19 eqid CoppCatCcurryFHomFoppCatC=CoppCatCcurryFHomFoppCatC
20 11 oppccat CCatoppCatCCat
21 3 20 syl φoppCatCCat
22 eqid SetCatranHom𝑓C=SetCatranHom𝑓C
23 fvex Hom𝑓CV
24 23 rnex ranHom𝑓CV
25 24 a1i φranHom𝑓CV
26 ssidd φranHom𝑓CranHom𝑓C
27 11 12 22 3 25 26 oppchofcl φHomFoppCatCC×coppCatCFuncSetCatranHom𝑓C
28 11 2 oppcbas B=BaseoppCatC
29 eqid 1stCoppCatCcurryFHomFoppCatCX=1stCoppCatCcurryFHomFoppCatCX
30 eqid HomoppCatC=HomoppCatC
31 eqid IdC=IdC
32 5 11 oppchom ZHomoppCatCW=WHZ
33 9 32 eleqtrrdi φFZHomoppCatCW
34 19 2 3 21 27 28 4 29 6 30 31 8 33 curf12 φZ2nd1stCoppCatCcurryFHomFoppCatCXWF=IdCXXZ2ndHomFoppCatCXWF
35 18 34 eqtrd φZ2nd1stYXWF=IdCXXZ2ndHomFoppCatCXWF
36 35 fveq1d φZ2nd1stYXWFG=IdCXXZ2ndHomFoppCatCXWFG
37 eqid compoppCatC=compoppCatC
38 2 5 31 3 4 catidcl φIdCXXHX
39 5 11 oppchom XHomoppCatCX=XHX
40 38 39 eleqtrrdi φIdCXXHomoppCatCX
41 5 11 oppchom XHomoppCatCZ=ZHX
42 10 41 eleqtrrdi φGXHomoppCatCZ
43 12 21 28 30 4 6 4 8 37 40 33 42 hof2 φIdCXXZ2ndHomFoppCatCXWFG=FXZcompoppCatCWGXXcompoppCatCWIdCX
44 2 7 11 4 6 8 oppcco φFXZcompoppCatCWG=GWZ·˙XF
45 44 oveq1d φFXZcompoppCatCWGXXcompoppCatCWIdCX=GWZ·˙XFXXcompoppCatCWIdCX
46 2 7 11 4 4 8 oppcco φGWZ·˙XFXXcompoppCatCWIdCX=IdCXWX·˙XGWZ·˙XF
47 2 5 7 3 8 6 4 9 10 catcocl φGWZ·˙XFWHX
48 2 5 31 3 8 7 4 47 catlid φIdCXWX·˙XGWZ·˙XF=GWZ·˙XF
49 45 46 48 3eqtrd φFXZcompoppCatCWGXXcompoppCatCWIdCX=GWZ·˙XF
50 36 43 49 3eqtrd φZ2nd1stYXWFG=GWZ·˙XF