Step |
Hyp |
Ref |
Expression |
1 |
|
yon11.y |
|
2 |
|
yon11.b |
|
3 |
|
yon11.c |
|
4 |
|
yon11.p |
|
5 |
|
yon11.h |
|
6 |
|
yon11.z |
|
7 |
|
yon12.x |
|
8 |
|
yon12.w |
|
9 |
|
yon12.f |
|
10 |
|
yon12.g |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
1 3 11 12
|
yonval |
|
14 |
13
|
fveq2d |
|
15 |
14
|
fveq1d |
|
16 |
15
|
fveq2d |
|
17 |
16
|
oveqd |
|
18 |
17
|
fveq1d |
|
19 |
|
eqid |
|
20 |
11
|
oppccat |
|
21 |
3 20
|
syl |
|
22 |
|
eqid |
|
23 |
|
fvex |
|
24 |
23
|
rnex |
|
25 |
24
|
a1i |
|
26 |
|
ssidd |
|
27 |
11 12 22 3 25 26
|
oppchofcl |
|
28 |
11 2
|
oppcbas |
|
29 |
|
eqid |
|
30 |
|
eqid |
|
31 |
|
eqid |
|
32 |
5 11
|
oppchom |
|
33 |
9 32
|
eleqtrrdi |
|
34 |
19 2 3 21 27 28 4 29 6 30 31 8 33
|
curf12 |
|
35 |
18 34
|
eqtrd |
|
36 |
35
|
fveq1d |
|
37 |
|
eqid |
|
38 |
2 5 31 3 4
|
catidcl |
|
39 |
5 11
|
oppchom |
|
40 |
38 39
|
eleqtrrdi |
|
41 |
5 11
|
oppchom |
|
42 |
10 41
|
eleqtrrdi |
|
43 |
12 21 28 30 4 6 4 8 37 40 33 42
|
hof2 |
|
44 |
2 7 11 4 6 8
|
oppcco |
|
45 |
44
|
oveq1d |
|
46 |
2 7 11 4 4 8
|
oppcco |
|
47 |
2 5 7 3 8 6 4 9 10
|
catcocl |
|
48 |
2 5 31 3 8 7 4 47
|
catlid |
|
49 |
45 46 48
|
3eqtrd |
|
50 |
36 43 49
|
3eqtrd |
|