Description: The object part of the Hom functor maps X , Y to the set of morphisms from X to Y . (Contributed by Mario Carneiro, 15-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hofval.m | ⊢ 𝑀 = ( HomF ‘ 𝐶 ) | |
| hofval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| hof1.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| hof1.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| hof1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| hof1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | hof1 | ⊢ ( 𝜑 → ( 𝑋 ( 1st ‘ 𝑀 ) 𝑌 ) = ( 𝑋 𝐻 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hofval.m | ⊢ 𝑀 = ( HomF ‘ 𝐶 ) | |
| 2 | hofval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 3 | hof1.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 4 | hof1.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 5 | hof1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | hof1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | 1 2 | hof1fval | ⊢ ( 𝜑 → ( 1st ‘ 𝑀 ) = ( Homf ‘ 𝐶 ) ) |
| 8 | 7 | oveqd | ⊢ ( 𝜑 → ( 𝑋 ( 1st ‘ 𝑀 ) 𝑌 ) = ( 𝑋 ( Homf ‘ 𝐶 ) 𝑌 ) ) |
| 9 | eqid | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) | |
| 10 | 9 3 4 5 6 | homfval | ⊢ ( 𝜑 → ( 𝑋 ( Homf ‘ 𝐶 ) 𝑌 ) = ( 𝑋 𝐻 𝑌 ) ) |
| 11 | 8 10 | eqtrd | ⊢ ( 𝜑 → ( 𝑋 ( 1st ‘ 𝑀 ) 𝑌 ) = ( 𝑋 𝐻 𝑌 ) ) |