Metamath Proof Explorer


Theorem hof1

Description: The object part of the Hom functor maps X , Y to the set of morphisms from X to Y . (Contributed by Mario Carneiro, 15-Jan-2017)

Ref Expression
Hypotheses hofval.m 𝑀 = ( HomF𝐶 )
hofval.c ( 𝜑𝐶 ∈ Cat )
hof1.b 𝐵 = ( Base ‘ 𝐶 )
hof1.h 𝐻 = ( Hom ‘ 𝐶 )
hof1.x ( 𝜑𝑋𝐵 )
hof1.y ( 𝜑𝑌𝐵 )
Assertion hof1 ( 𝜑 → ( 𝑋 ( 1st𝑀 ) 𝑌 ) = ( 𝑋 𝐻 𝑌 ) )

Proof

Step Hyp Ref Expression
1 hofval.m 𝑀 = ( HomF𝐶 )
2 hofval.c ( 𝜑𝐶 ∈ Cat )
3 hof1.b 𝐵 = ( Base ‘ 𝐶 )
4 hof1.h 𝐻 = ( Hom ‘ 𝐶 )
5 hof1.x ( 𝜑𝑋𝐵 )
6 hof1.y ( 𝜑𝑌𝐵 )
7 1 2 hof1fval ( 𝜑 → ( 1st𝑀 ) = ( Homf𝐶 ) )
8 7 oveqd ( 𝜑 → ( 𝑋 ( 1st𝑀 ) 𝑌 ) = ( 𝑋 ( Homf𝐶 ) 𝑌 ) )
9 eqid ( Homf𝐶 ) = ( Homf𝐶 )
10 9 3 4 5 6 homfval ( 𝜑 → ( 𝑋 ( Homf𝐶 ) 𝑌 ) = ( 𝑋 𝐻 𝑌 ) )
11 8 10 eqtrd ( 𝜑 → ( 𝑋 ( 1st𝑀 ) 𝑌 ) = ( 𝑋 𝐻 𝑌 ) )