Description: The object part of the Hom functor maps X , Y to the set of morphisms from X to Y . (Contributed by Mario Carneiro, 15-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hofval.m | ⊢ 𝑀 = ( HomF ‘ 𝐶 ) | |
hofval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
hof1.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
hof1.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
hof1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
hof1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
Assertion | hof1 | ⊢ ( 𝜑 → ( 𝑋 ( 1st ‘ 𝑀 ) 𝑌 ) = ( 𝑋 𝐻 𝑌 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hofval.m | ⊢ 𝑀 = ( HomF ‘ 𝐶 ) | |
2 | hofval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
3 | hof1.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
4 | hof1.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
5 | hof1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
6 | hof1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
7 | 1 2 | hof1fval | ⊢ ( 𝜑 → ( 1st ‘ 𝑀 ) = ( Homf ‘ 𝐶 ) ) |
8 | 7 | oveqd | ⊢ ( 𝜑 → ( 𝑋 ( 1st ‘ 𝑀 ) 𝑌 ) = ( 𝑋 ( Homf ‘ 𝐶 ) 𝑌 ) ) |
9 | eqid | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) | |
10 | 9 3 4 5 6 | homfval | ⊢ ( 𝜑 → ( 𝑋 ( Homf ‘ 𝐶 ) 𝑌 ) = ( 𝑋 𝐻 𝑌 ) ) |
11 | 8 10 | eqtrd | ⊢ ( 𝜑 → ( 𝑋 ( 1st ‘ 𝑀 ) 𝑌 ) = ( 𝑋 𝐻 𝑌 ) ) |