Description: The object part of the Hom functor maps X , Y to the set of morphisms from X to Y . (Contributed by Mario Carneiro, 15-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hofval.m | |- M = ( HomF ` C ) | |
| hofval.c | |- ( ph -> C e. Cat ) | ||
| hof1.b | |- B = ( Base ` C ) | ||
| hof1.h | |- H = ( Hom ` C ) | ||
| hof1.x | |- ( ph -> X e. B ) | ||
| hof1.y | |- ( ph -> Y e. B ) | ||
| Assertion | hof1 | |- ( ph -> ( X ( 1st ` M ) Y ) = ( X H Y ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hofval.m | |- M = ( HomF ` C ) | |
| 2 | hofval.c | |- ( ph -> C e. Cat ) | |
| 3 | hof1.b | |- B = ( Base ` C ) | |
| 4 | hof1.h | |- H = ( Hom ` C ) | |
| 5 | hof1.x | |- ( ph -> X e. B ) | |
| 6 | hof1.y | |- ( ph -> Y e. B ) | |
| 7 | 1 2 | hof1fval | |- ( ph -> ( 1st ` M ) = ( Homf ` C ) ) | 
| 8 | 7 | oveqd | |- ( ph -> ( X ( 1st ` M ) Y ) = ( X ( Homf ` C ) Y ) ) | 
| 9 | eqid | |- ( Homf ` C ) = ( Homf ` C ) | |
| 10 | 9 3 4 5 6 | homfval | |- ( ph -> ( X ( Homf ` C ) Y ) = ( X H Y ) ) | 
| 11 | 8 10 | eqtrd | |- ( ph -> ( X ( 1st ` M ) Y ) = ( X H Y ) ) |