Metamath Proof Explorer


Theorem hof1

Description: The object part of the Hom functor maps X , Y to the set of morphisms from X to Y . (Contributed by Mario Carneiro, 15-Jan-2017)

Ref Expression
Hypotheses hofval.m
|- M = ( HomF ` C )
hofval.c
|- ( ph -> C e. Cat )
hof1.b
|- B = ( Base ` C )
hof1.h
|- H = ( Hom ` C )
hof1.x
|- ( ph -> X e. B )
hof1.y
|- ( ph -> Y e. B )
Assertion hof1
|- ( ph -> ( X ( 1st ` M ) Y ) = ( X H Y ) )

Proof

Step Hyp Ref Expression
1 hofval.m
 |-  M = ( HomF ` C )
2 hofval.c
 |-  ( ph -> C e. Cat )
3 hof1.b
 |-  B = ( Base ` C )
4 hof1.h
 |-  H = ( Hom ` C )
5 hof1.x
 |-  ( ph -> X e. B )
6 hof1.y
 |-  ( ph -> Y e. B )
7 1 2 hof1fval
 |-  ( ph -> ( 1st ` M ) = ( Homf ` C ) )
8 7 oveqd
 |-  ( ph -> ( X ( 1st ` M ) Y ) = ( X ( Homf ` C ) Y ) )
9 eqid
 |-  ( Homf ` C ) = ( Homf ` C )
10 9 3 4 5 6 homfval
 |-  ( ph -> ( X ( Homf ` C ) Y ) = ( X H Y ) )
11 8 10 eqtrd
 |-  ( ph -> ( X ( 1st ` M ) Y ) = ( X H Y ) )