Description: The object part of the Hom functor maps X , Y to the set of morphisms from X to Y . (Contributed by Mario Carneiro, 15-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hofval.m | |- M = ( HomF ` C ) |
|
hofval.c | |- ( ph -> C e. Cat ) |
||
hof1.b | |- B = ( Base ` C ) |
||
hof1.h | |- H = ( Hom ` C ) |
||
hof1.x | |- ( ph -> X e. B ) |
||
hof1.y | |- ( ph -> Y e. B ) |
||
Assertion | hof1 | |- ( ph -> ( X ( 1st ` M ) Y ) = ( X H Y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hofval.m | |- M = ( HomF ` C ) |
|
2 | hofval.c | |- ( ph -> C e. Cat ) |
|
3 | hof1.b | |- B = ( Base ` C ) |
|
4 | hof1.h | |- H = ( Hom ` C ) |
|
5 | hof1.x | |- ( ph -> X e. B ) |
|
6 | hof1.y | |- ( ph -> Y e. B ) |
|
7 | 1 2 | hof1fval | |- ( ph -> ( 1st ` M ) = ( Homf ` C ) ) |
8 | 7 | oveqd | |- ( ph -> ( X ( 1st ` M ) Y ) = ( X ( Homf ` C ) Y ) ) |
9 | eqid | |- ( Homf ` C ) = ( Homf ` C ) |
|
10 | 9 3 4 5 6 | homfval | |- ( ph -> ( X ( Homf ` C ) Y ) = ( X H Y ) ) |
11 | 8 10 | eqtrd | |- ( ph -> ( X ( 1st ` M ) Y ) = ( X H Y ) ) |