Metamath Proof Explorer


Theorem hof1

Description: The object part of the Hom functor maps X , Y to the set of morphisms from X to Y . (Contributed by Mario Carneiro, 15-Jan-2017)

Ref Expression
Hypotheses hofval.m M=HomFC
hofval.c φCCat
hof1.b B=BaseC
hof1.h H=HomC
hof1.x φXB
hof1.y φYB
Assertion hof1 φX1stMY=XHY

Proof

Step Hyp Ref Expression
1 hofval.m M=HomFC
2 hofval.c φCCat
3 hof1.b B=BaseC
4 hof1.h H=HomC
5 hof1.x φXB
6 hof1.y φYB
7 1 2 hof1fval φ1stM=Hom𝑓C
8 7 oveqd φX1stMY=XHom𝑓CY
9 eqid Hom𝑓C=Hom𝑓C
10 9 3 4 5 6 homfval φXHom𝑓CY=XHY
11 8 10 eqtrd φX1stMY=XHY