Metamath Proof Explorer


Theorem hof1

Description: The object part of the Hom functor maps X , Y to the set of morphisms from X to Y . (Contributed by Mario Carneiro, 15-Jan-2017)

Ref Expression
Hypotheses hofval.m M = Hom F C
hofval.c φ C Cat
hof1.b B = Base C
hof1.h H = Hom C
hof1.x φ X B
hof1.y φ Y B
Assertion hof1 φ X 1 st M Y = X H Y

Proof

Step Hyp Ref Expression
1 hofval.m M = Hom F C
2 hofval.c φ C Cat
3 hof1.b B = Base C
4 hof1.h H = Hom C
5 hof1.x φ X B
6 hof1.y φ Y B
7 1 2 hof1fval φ 1 st M = Hom 𝑓 C
8 7 oveqd φ X 1 st M Y = X Hom 𝑓 C Y
9 eqid Hom 𝑓 C = Hom 𝑓 C
10 9 3 4 5 6 homfval φ X Hom 𝑓 C Y = X H Y
11 8 10 eqtrd φ X 1 st M Y = X H Y