| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hofval.m |
|- M = ( HomF ` C ) |
| 2 |
|
hofval.c |
|- ( ph -> C e. Cat ) |
| 3 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 4 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 5 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 6 |
1 2 3 4 5
|
hofval |
|- ( ph -> M = <. ( Homf ` C ) , ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) >. ) |
| 7 |
|
fvex |
|- ( Homf ` C ) e. _V |
| 8 |
|
fvex |
|- ( Base ` C ) e. _V |
| 9 |
8 8
|
xpex |
|- ( ( Base ` C ) X. ( Base ` C ) ) e. _V |
| 10 |
9 9
|
mpoex |
|- ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) e. _V |
| 11 |
7 10
|
op1std |
|- ( M = <. ( Homf ` C ) , ( x e. ( ( Base ` C ) X. ( Base ` C ) ) , y e. ( ( Base ` C ) X. ( Base ` C ) ) |-> ( f e. ( ( 1st ` y ) ( Hom ` C ) ( 1st ` x ) ) , g e. ( ( 2nd ` x ) ( Hom ` C ) ( 2nd ` y ) ) |-> ( h e. ( ( Hom ` C ) ` x ) |-> ( ( g ( x ( comp ` C ) ( 2nd ` y ) ) h ) ( <. ( 1st ` y ) , ( 1st ` x ) >. ( comp ` C ) ( 2nd ` y ) ) f ) ) ) ) >. -> ( 1st ` M ) = ( Homf ` C ) ) |
| 12 |
6 11
|
syl |
|- ( ph -> ( 1st ` M ) = ( Homf ` C ) ) |