Metamath Proof Explorer


Theorem curf11

Description: Value of the double evaluated curry functor. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses curfval.g G = C D curry F F
curfval.a A = Base C
curfval.c φ C Cat
curfval.d φ D Cat
curfval.f φ F C × c D Func E
curfval.b B = Base D
curf1.x φ X A
curf1.k K = 1 st G X
curf11.y φ Y B
Assertion curf11 φ 1 st K Y = X 1 st F Y

Proof

Step Hyp Ref Expression
1 curfval.g G = C D curry F F
2 curfval.a A = Base C
3 curfval.c φ C Cat
4 curfval.d φ D Cat
5 curfval.f φ F C × c D Func E
6 curfval.b B = Base D
7 curf1.x φ X A
8 curf1.k K = 1 st G X
9 curf11.y φ Y B
10 eqid Hom D = Hom D
11 eqid Id C = Id C
12 1 2 3 4 5 6 7 8 10 11 curf1 φ K = y B X 1 st F y y B , z B g y Hom D z Id C X X y 2 nd F X z g
13 6 fvexi B V
14 13 mptex y B X 1 st F y V
15 13 13 mpoex y B , z B g y Hom D z Id C X X y 2 nd F X z g V
16 14 15 op1std K = y B X 1 st F y y B , z B g y Hom D z Id C X X y 2 nd F X z g 1 st K = y B X 1 st F y
17 12 16 syl φ 1 st K = y B X 1 st F y
18 simpr φ y = Y y = Y
19 18 oveq2d φ y = Y X 1 st F y = X 1 st F Y
20 ovexd φ X 1 st F Y V
21 17 19 9 20 fvmptd φ 1 st K Y = X 1 st F Y