Metamath Proof Explorer


Theorem yon1cl

Description: The Yoneda embedding at an object of C is a presheaf on C , also known as the contravariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017)

Ref Expression
Hypotheses yon11.y Y = Yon C
yon11.b B = Base C
yon11.c φ C Cat
yon11.p φ X B
yon1cl.o O = oppCat C
yon1cl.s S = SetCat U
yon1cl.u φ U V
yon1cl.h φ ran Hom 𝑓 C U
Assertion yon1cl φ 1 st Y X O Func S

Proof

Step Hyp Ref Expression
1 yon11.y Y = Yon C
2 yon11.b B = Base C
3 yon11.c φ C Cat
4 yon11.p φ X B
5 yon1cl.o O = oppCat C
6 yon1cl.s S = SetCat U
7 yon1cl.u φ U V
8 yon1cl.h φ ran Hom 𝑓 C U
9 eqid O FuncCat S = O FuncCat S
10 9 fucbas O Func S = Base O FuncCat S
11 relfunc Rel C Func O FuncCat S
12 1 3 5 6 9 7 8 yoncl φ Y C Func O FuncCat S
13 1st2ndbr Rel C Func O FuncCat S Y C Func O FuncCat S 1 st Y C Func O FuncCat S 2 nd Y
14 11 12 13 sylancr φ 1 st Y C Func O FuncCat S 2 nd Y
15 2 10 14 funcf1 φ 1 st Y : B O Func S
16 15 4 ffvelrnd φ 1 st Y X O Func S