Metamath Proof Explorer


Definition df-yon

Description: Define the Yoneda embedding, which is the currying of the (opposite) Hom functor. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Assertion df-yon Yon = ( 𝑐 ∈ Cat ↦ ( ⟨ 𝑐 , ( oppCat ‘ 𝑐 ) ⟩ curryF ( HomF ‘ ( oppCat ‘ 𝑐 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cyon Yon
1 vc 𝑐
2 ccat Cat
3 1 cv 𝑐
4 coppc oppCat
5 3 4 cfv ( oppCat ‘ 𝑐 )
6 3 5 cop 𝑐 , ( oppCat ‘ 𝑐 ) ⟩
7 ccurf curryF
8 chof HomF
9 5 8 cfv ( HomF ‘ ( oppCat ‘ 𝑐 ) )
10 6 9 7 co ( ⟨ 𝑐 , ( oppCat ‘ 𝑐 ) ⟩ curryF ( HomF ‘ ( oppCat ‘ 𝑐 ) ) )
11 1 2 10 cmpt ( 𝑐 ∈ Cat ↦ ( ⟨ 𝑐 , ( oppCat ‘ 𝑐 ) ⟩ curryF ( HomF ‘ ( oppCat ‘ 𝑐 ) ) ) )
12 0 11 wceq Yon = ( 𝑐 ∈ Cat ↦ ( ⟨ 𝑐 , ( oppCat ‘ 𝑐 ) ⟩ curryF ( HomF ‘ ( oppCat ‘ 𝑐 ) ) ) )