Description: Define the Yoneda embedding, which is the currying of the (opposite) Hom functor. (Contributed by Mario Carneiro, 11-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | df-yon | ⊢ Yon = ( 𝑐 ∈ Cat ↦ ( 〈 𝑐 , ( oppCat ‘ 𝑐 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝑐 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cyon | ⊢ Yon | |
1 | vc | ⊢ 𝑐 | |
2 | ccat | ⊢ Cat | |
3 | 1 | cv | ⊢ 𝑐 |
4 | coppc | ⊢ oppCat | |
5 | 3 4 | cfv | ⊢ ( oppCat ‘ 𝑐 ) |
6 | 3 5 | cop | ⊢ 〈 𝑐 , ( oppCat ‘ 𝑐 ) 〉 |
7 | ccurf | ⊢ curryF | |
8 | chof | ⊢ HomF | |
9 | 5 8 | cfv | ⊢ ( HomF ‘ ( oppCat ‘ 𝑐 ) ) |
10 | 6 9 7 | co | ⊢ ( 〈 𝑐 , ( oppCat ‘ 𝑐 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝑐 ) ) ) |
11 | 1 2 10 | cmpt | ⊢ ( 𝑐 ∈ Cat ↦ ( 〈 𝑐 , ( oppCat ‘ 𝑐 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝑐 ) ) ) ) |
12 | 0 11 | wceq | ⊢ Yon = ( 𝑐 ∈ Cat ↦ ( 〈 𝑐 , ( oppCat ‘ 𝑐 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝑐 ) ) ) ) |