Step |
Hyp |
Ref |
Expression |
1 |
|
oppcbas.1 |
|- O = ( oppCat ` C ) |
2 |
|
oppchomf.h |
|- H = ( Homf ` C ) |
3 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
4 |
3 1
|
oppchom |
|- ( y ( Hom ` O ) x ) = ( x ( Hom ` C ) y ) |
5 |
4
|
a1i |
|- ( ( y e. ( Base ` C ) /\ x e. ( Base ` C ) ) -> ( y ( Hom ` O ) x ) = ( x ( Hom ` C ) y ) ) |
6 |
5
|
mpoeq3ia |
|- ( y e. ( Base ` C ) , x e. ( Base ` C ) |-> ( y ( Hom ` O ) x ) ) = ( y e. ( Base ` C ) , x e. ( Base ` C ) |-> ( x ( Hom ` C ) y ) ) |
7 |
|
eqid |
|- ( Homf ` O ) = ( Homf ` O ) |
8 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
9 |
1 8
|
oppcbas |
|- ( Base ` C ) = ( Base ` O ) |
10 |
|
eqid |
|- ( Hom ` O ) = ( Hom ` O ) |
11 |
7 9 10
|
homffval |
|- ( Homf ` O ) = ( y e. ( Base ` C ) , x e. ( Base ` C ) |-> ( y ( Hom ` O ) x ) ) |
12 |
2 8 3
|
homffval |
|- H = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( Hom ` C ) y ) ) |
13 |
12
|
tposmpo |
|- tpos H = ( y e. ( Base ` C ) , x e. ( Base ` C ) |-> ( x ( Hom ` C ) y ) ) |
14 |
6 11 13
|
3eqtr4ri |
|- tpos H = ( Homf ` O ) |