Metamath Proof Explorer


Theorem yoniso

Description: If the codomain is recoverable from a hom-set, then the Yoneda embedding is injective on objects, and hence is an isomorphism from C into a full subcategory of a presheaf category. (Contributed by Mario Carneiro, 30-Jan-2017)

Ref Expression
Hypotheses yoniso.y Y=YonC
yoniso.o O=oppCatC
yoniso.s S=SetCatU
yoniso.d D=CatCatV
yoniso.b B=BaseD
yoniso.i I=IsoD
yoniso.q Q=OFuncCatS
yoniso.e E=Q𝑠ran1stY
yoniso.v φVX
yoniso.c φCB
yoniso.u φUW
yoniso.h φranHom𝑓CU
yoniso.eb φEB
yoniso.1 φxBaseCyBaseCFxHomCy=y
Assertion yoniso φYCIE

Proof

Step Hyp Ref Expression
1 yoniso.y Y=YonC
2 yoniso.o O=oppCatC
3 yoniso.s S=SetCatU
4 yoniso.d D=CatCatV
5 yoniso.b B=BaseD
6 yoniso.i I=IsoD
7 yoniso.q Q=OFuncCatS
8 yoniso.e E=Q𝑠ran1stY
9 yoniso.v φVX
10 yoniso.c φCB
11 yoniso.u φUW
12 yoniso.h φranHom𝑓CU
13 yoniso.eb φEB
14 yoniso.1 φxBaseCyBaseCFxHomCy=y
15 relfunc RelCFuncQ
16 4 5 9 catcbas φB=VCat
17 inss2 VCatCat
18 16 17 eqsstrdi φBCat
19 18 10 sseldd φCCat
20 1 19 2 3 7 11 12 yoncl φYCFuncQ
21 1st2nd RelCFuncQYCFuncQY=1stY2ndY
22 15 20 21 sylancr φY=1stY2ndY
23 1 2 3 7 19 11 12 yonffth φYCFullQCFaithQ
24 22 23 eqeltrrd φ1stY2ndYCFullQCFaithQ
25 eqid BaseC=BaseC
26 2 oppccat CCatOCat
27 19 26 syl φOCat
28 3 setccat UWSCat
29 11 28 syl φSCat
30 7 27 29 fuccat φQCat
31 fvex 1stYV
32 31 rnex ran1stYV
33 32 a1i φran1stYV
34 7 fucbas OFuncS=BaseQ
35 1st2ndbr RelCFuncQYCFuncQ1stYCFuncQ2ndY
36 15 20 35 sylancr φ1stYCFuncQ2ndY
37 25 34 36 funcf1 φ1stY:BaseCOFuncS
38 37 ffnd φ1stYFnBaseC
39 dffn3 1stYFnBaseC1stY:BaseCran1stY
40 38 39 sylib φ1stY:BaseCran1stY
41 25 8 30 33 40 ffthres2c φ1stYCFullQCFaithQ2ndY1stYCFullECFaithE2ndY
42 df-br 1stYCFullQCFaithQ2ndY1stY2ndYCFullQCFaithQ
43 df-br 1stYCFullECFaithE2ndY1stY2ndYCFullECFaithE
44 41 42 43 3bitr3g φ1stY2ndYCFullQCFaithQ1stY2ndYCFullECFaithE
45 24 44 mpbid φ1stY2ndYCFullECFaithE
46 22 45 eqeltrd φYCFullECFaithE
47 fveq2 1stYx=1stYy1st1stYx=1st1stYy
48 47 fveq1d 1stYx=1stYy1st1stYxx=1st1stYyx
49 48 fveq2d 1stYx=1stYyF1st1stYxx=F1st1stYyx
50 simpl xBaseCyBaseCxBaseC
51 50 50 jca xBaseCyBaseCxBaseCxBaseC
52 eleq1w y=xyBaseCxBaseC
53 52 anbi2d y=xxBaseCyBaseCxBaseCxBaseC
54 53 anbi2d y=xφxBaseCyBaseCφxBaseCxBaseC
55 2fveq3 y=x1st1stYy=1st1stYx
56 55 fveq1d y=x1st1stYyx=1st1stYxx
57 56 fveq2d y=xF1st1stYyx=F1st1stYxx
58 id y=xy=x
59 57 58 eqeq12d y=xF1st1stYyx=yF1st1stYxx=x
60 54 59 imbi12d y=xφxBaseCyBaseCF1st1stYyx=yφxBaseCxBaseCF1st1stYxx=x
61 19 adantr φxBaseCyBaseCCCat
62 simprr φxBaseCyBaseCyBaseC
63 eqid HomC=HomC
64 simprl φxBaseCyBaseCxBaseC
65 1 25 61 62 63 64 yon11 φxBaseCyBaseC1st1stYyx=xHomCy
66 65 fveq2d φxBaseCyBaseCF1st1stYyx=FxHomCy
67 66 14 eqtrd φxBaseCyBaseCF1st1stYyx=y
68 60 67 chvarvv φxBaseCxBaseCF1st1stYxx=x
69 51 68 sylan2 φxBaseCyBaseCF1st1stYxx=x
70 69 67 eqeq12d φxBaseCyBaseCF1st1stYxx=F1st1stYyxx=y
71 49 70 imbitrid φxBaseCyBaseC1stYx=1stYyx=y
72 71 ralrimivva φxBaseCyBaseC1stYx=1stYyx=y
73 dff13 1stY:BaseC1-1OFuncS1stY:BaseCOFuncSxBaseCyBaseC1stYx=1stYyx=y
74 37 72 73 sylanbrc φ1stY:BaseC1-1OFuncS
75 f1f1orn 1stY:BaseC1-1OFuncS1stY:BaseC1-1 ontoran1stY
76 74 75 syl φ1stY:BaseC1-1 ontoran1stY
77 37 frnd φran1stYOFuncS
78 8 34 ressbas2 ran1stYOFuncSran1stY=BaseE
79 77 78 syl φran1stY=BaseE
80 79 f1oeq3d φ1stY:BaseC1-1 ontoran1stY1stY:BaseC1-1 ontoBaseE
81 76 80 mpbid φ1stY:BaseC1-1 ontoBaseE
82 eqid BaseE=BaseE
83 4 5 25 82 9 10 13 6 catciso φYCIEYCFullECFaithE1stY:BaseC1-1 ontoBaseE
84 46 81 83 mpbir2and φYCIE