Metamath Proof Explorer


Definition df-catc

Description: Definition of the category Cat, which consists of all categories in the universe u (i.e., " u -small categories", see Definition 3.44. of Adamek p. 39), with functors as the morphisms. Definition 3.47 of Adamek p. 40. We do not introduce a specific definition for " u -large categories", which can be expressed as ( Cat \ u ) . (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Assertion df-catc CatCat=uVuCat/bBasendxbHomndxxb,ybxFuncycompndxvb×b,zbg2ndvFuncz,fFuncvgfuncf

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccatc classCatCat
1 vu setvaru
2 cvv classV
3 1 cv setvaru
4 ccat classCat
5 3 4 cin classuCat
6 vb setvarb
7 cbs classBase
8 cnx classndx
9 8 7 cfv classBasendx
10 6 cv setvarb
11 9 10 cop classBasendxb
12 chom classHom
13 8 12 cfv classHomndx
14 vx setvarx
15 vy setvary
16 14 cv setvarx
17 cfunc classFunc
18 15 cv setvary
19 16 18 17 co classxFuncy
20 14 15 10 10 19 cmpo classxb,ybxFuncy
21 13 20 cop classHomndxxb,ybxFuncy
22 cco classcomp
23 8 22 cfv classcompndx
24 vv setvarv
25 10 10 cxp classb×b
26 vz setvarz
27 vg setvarg
28 c2nd class2nd
29 24 cv setvarv
30 29 28 cfv class2ndv
31 26 cv setvarz
32 30 31 17 co class2ndvFuncz
33 vf setvarf
34 29 17 cfv classFuncv
35 27 cv setvarg
36 ccofu classfunc
37 33 cv setvarf
38 35 37 36 co classgfuncf
39 27 33 32 34 38 cmpo classg2ndvFuncz,fFuncvgfuncf
40 24 26 25 10 39 cmpo classvb×b,zbg2ndvFuncz,fFuncvgfuncf
41 23 40 cop classcompndxvb×b,zbg2ndvFuncz,fFuncvgfuncf
42 11 21 41 ctp classBasendxbHomndxxb,ybxFuncycompndxvb×b,zbg2ndvFuncz,fFuncvgfuncf
43 6 5 42 csb classuCat/bBasendxbHomndxxb,ybxFuncycompndxvb×b,zbg2ndvFuncz,fFuncvgfuncf
44 1 2 43 cmpt classuVuCat/bBasendxbHomndxxb,ybxFuncycompndxvb×b,zbg2ndvFuncz,fFuncvgfuncf
45 0 44 wceq wffCatCat=uVuCat/bBasendxbHomndxxb,ybxFuncycompndxvb×b,zbg2ndvFuncz,fFuncvgfuncf