Description: Definition of the category Cat, which consists of all categories in the universe u (i.e., " u -small categories", see Definition 3.44. of Adamek p. 39), with functors as the morphisms. Definition 3.47 of Adamek p. 40. We do not introduce a specific definition for " u -large categories", which can be expressed as ( Cat \ u ) . (Contributed by Mario Carneiro, 3-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | df-catc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ccatc | |
|
1 | vu | |
|
2 | cvv | |
|
3 | 1 | cv | |
4 | ccat | |
|
5 | 3 4 | cin | |
6 | vb | |
|
7 | cbs | |
|
8 | cnx | |
|
9 | 8 7 | cfv | |
10 | 6 | cv | |
11 | 9 10 | cop | |
12 | chom | |
|
13 | 8 12 | cfv | |
14 | vx | |
|
15 | vy | |
|
16 | 14 | cv | |
17 | cfunc | |
|
18 | 15 | cv | |
19 | 16 18 17 | co | |
20 | 14 15 10 10 19 | cmpo | |
21 | 13 20 | cop | |
22 | cco | |
|
23 | 8 22 | cfv | |
24 | vv | |
|
25 | 10 10 | cxp | |
26 | vz | |
|
27 | vg | |
|
28 | c2nd | |
|
29 | 24 | cv | |
30 | 29 28 | cfv | |
31 | 26 | cv | |
32 | 30 31 17 | co | |
33 | vf | |
|
34 | 29 17 | cfv | |
35 | 27 | cv | |
36 | ccofu | |
|
37 | 33 | cv | |
38 | 35 37 36 | co | |
39 | 27 33 32 34 38 | cmpo | |
40 | 24 26 25 10 39 | cmpo | |
41 | 23 40 | cop | |
42 | 11 21 41 | ctp | |
43 | 6 5 42 | csb | |
44 | 1 2 43 | cmpt | |
45 | 0 44 | wceq | |