Metamath Proof Explorer


Theorem catcval

Description: Value of the category of categories (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses catcval.c C = CatCat U
catcval.u φ U V
catcval.b φ B = U Cat
catcval.h φ H = x B , y B x Func y
catcval.o φ · ˙ = v B × B , z B g 2 nd v Func z , f Func v g func f
Assertion catcval φ C = Base ndx B Hom ndx H comp ndx · ˙

Proof

Step Hyp Ref Expression
1 catcval.c C = CatCat U
2 catcval.u φ U V
3 catcval.b φ B = U Cat
4 catcval.h φ H = x B , y B x Func y
5 catcval.o φ · ˙ = v B × B , z B g 2 nd v Func z , f Func v g func f
6 df-catc CatCat = u V u Cat / b Base ndx b Hom ndx x b , y b x Func y comp ndx v b × b , z b g 2 nd v Func z , f Func v g func f
7 vex u V
8 7 inex1 u Cat V
9 8 a1i φ u = U u Cat V
10 simpr φ u = U u = U
11 10 ineq1d φ u = U u Cat = U Cat
12 3 adantr φ u = U B = U Cat
13 11 12 eqtr4d φ u = U u Cat = B
14 simpr φ u = U b = B b = B
15 14 opeq2d φ u = U b = B Base ndx b = Base ndx B
16 eqidd φ u = U b = B x Func y = x Func y
17 14 14 16 mpoeq123dv φ u = U b = B x b , y b x Func y = x B , y B x Func y
18 4 ad2antrr φ u = U b = B H = x B , y B x Func y
19 17 18 eqtr4d φ u = U b = B x b , y b x Func y = H
20 19 opeq2d φ u = U b = B Hom ndx x b , y b x Func y = Hom ndx H
21 14 sqxpeqd φ u = U b = B b × b = B × B
22 eqidd φ u = U b = B g 2 nd v Func z , f Func v g func f = g 2 nd v Func z , f Func v g func f
23 21 14 22 mpoeq123dv φ u = U b = B v b × b , z b g 2 nd v Func z , f Func v g func f = v B × B , z B g 2 nd v Func z , f Func v g func f
24 5 ad2antrr φ u = U b = B · ˙ = v B × B , z B g 2 nd v Func z , f Func v g func f
25 23 24 eqtr4d φ u = U b = B v b × b , z b g 2 nd v Func z , f Func v g func f = · ˙
26 25 opeq2d φ u = U b = B comp ndx v b × b , z b g 2 nd v Func z , f Func v g func f = comp ndx · ˙
27 15 20 26 tpeq123d φ u = U b = B Base ndx b Hom ndx x b , y b x Func y comp ndx v b × b , z b g 2 nd v Func z , f Func v g func f = Base ndx B Hom ndx H comp ndx · ˙
28 9 13 27 csbied2 φ u = U u Cat / b Base ndx b Hom ndx x b , y b x Func y comp ndx v b × b , z b g 2 nd v Func z , f Func v g func f = Base ndx B Hom ndx H comp ndx · ˙
29 2 elexd φ U V
30 tpex Base ndx B Hom ndx H comp ndx · ˙ V
31 30 a1i φ Base ndx B Hom ndx H comp ndx · ˙ V
32 6 28 29 31 fvmptd2 φ CatCat U = Base ndx B Hom ndx H comp ndx · ˙
33 1 32 syl5eq φ C = Base ndx B Hom ndx H comp ndx · ˙