Metamath Proof Explorer


Theorem catcval

Description: Value of the category of categories (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses catcval.c C=CatCatU
catcval.u φUV
catcval.b φB=UCat
catcval.h φH=xB,yBxFuncy
catcval.o φ·˙=vB×B,zBg2ndvFuncz,fFuncvgfuncf
Assertion catcval φC=BasendxBHomndxHcompndx·˙

Proof

Step Hyp Ref Expression
1 catcval.c C=CatCatU
2 catcval.u φUV
3 catcval.b φB=UCat
4 catcval.h φH=xB,yBxFuncy
5 catcval.o φ·˙=vB×B,zBg2ndvFuncz,fFuncvgfuncf
6 df-catc CatCat=uVuCat/bBasendxbHomndxxb,ybxFuncycompndxvb×b,zbg2ndvFuncz,fFuncvgfuncf
7 vex uV
8 7 inex1 uCatV
9 8 a1i φu=UuCatV
10 simpr φu=Uu=U
11 10 ineq1d φu=UuCat=UCat
12 3 adantr φu=UB=UCat
13 11 12 eqtr4d φu=UuCat=B
14 simpr φu=Ub=Bb=B
15 14 opeq2d φu=Ub=BBasendxb=BasendxB
16 eqidd φu=Ub=BxFuncy=xFuncy
17 14 14 16 mpoeq123dv φu=Ub=Bxb,ybxFuncy=xB,yBxFuncy
18 4 ad2antrr φu=Ub=BH=xB,yBxFuncy
19 17 18 eqtr4d φu=Ub=Bxb,ybxFuncy=H
20 19 opeq2d φu=Ub=BHomndxxb,ybxFuncy=HomndxH
21 14 sqxpeqd φu=Ub=Bb×b=B×B
22 eqidd φu=Ub=Bg2ndvFuncz,fFuncvgfuncf=g2ndvFuncz,fFuncvgfuncf
23 21 14 22 mpoeq123dv φu=Ub=Bvb×b,zbg2ndvFuncz,fFuncvgfuncf=vB×B,zBg2ndvFuncz,fFuncvgfuncf
24 5 ad2antrr φu=Ub=B·˙=vB×B,zBg2ndvFuncz,fFuncvgfuncf
25 23 24 eqtr4d φu=Ub=Bvb×b,zbg2ndvFuncz,fFuncvgfuncf=·˙
26 25 opeq2d φu=Ub=Bcompndxvb×b,zbg2ndvFuncz,fFuncvgfuncf=compndx·˙
27 15 20 26 tpeq123d φu=Ub=BBasendxbHomndxxb,ybxFuncycompndxvb×b,zbg2ndvFuncz,fFuncvgfuncf=BasendxBHomndxHcompndx·˙
28 9 13 27 csbied2 φu=UuCat/bBasendxbHomndxxb,ybxFuncycompndxvb×b,zbg2ndvFuncz,fFuncvgfuncf=BasendxBHomndxHcompndx·˙
29 2 elexd φUV
30 tpex BasendxBHomndxHcompndx·˙V
31 30 a1i φBasendxBHomndxHcompndx·˙V
32 6 28 29 31 fvmptd2 φCatCatU=BasendxBHomndxHcompndx·˙
33 1 32 eqtrid φC=BasendxBHomndxHcompndx·˙