| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccatc |
⊢ CatCat |
| 1 |
|
vu |
⊢ 𝑢 |
| 2 |
|
cvv |
⊢ V |
| 3 |
1
|
cv |
⊢ 𝑢 |
| 4 |
|
ccat |
⊢ Cat |
| 5 |
3 4
|
cin |
⊢ ( 𝑢 ∩ Cat ) |
| 6 |
|
vb |
⊢ 𝑏 |
| 7 |
|
cbs |
⊢ Base |
| 8 |
|
cnx |
⊢ ndx |
| 9 |
8 7
|
cfv |
⊢ ( Base ‘ ndx ) |
| 10 |
6
|
cv |
⊢ 𝑏 |
| 11 |
9 10
|
cop |
⊢ 〈 ( Base ‘ ndx ) , 𝑏 〉 |
| 12 |
|
chom |
⊢ Hom |
| 13 |
8 12
|
cfv |
⊢ ( Hom ‘ ndx ) |
| 14 |
|
vx |
⊢ 𝑥 |
| 15 |
|
vy |
⊢ 𝑦 |
| 16 |
14
|
cv |
⊢ 𝑥 |
| 17 |
|
cfunc |
⊢ Func |
| 18 |
15
|
cv |
⊢ 𝑦 |
| 19 |
16 18 17
|
co |
⊢ ( 𝑥 Func 𝑦 ) |
| 20 |
14 15 10 10 19
|
cmpo |
⊢ ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 Func 𝑦 ) ) |
| 21 |
13 20
|
cop |
⊢ 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 Func 𝑦 ) ) 〉 |
| 22 |
|
cco |
⊢ comp |
| 23 |
8 22
|
cfv |
⊢ ( comp ‘ ndx ) |
| 24 |
|
vv |
⊢ 𝑣 |
| 25 |
10 10
|
cxp |
⊢ ( 𝑏 × 𝑏 ) |
| 26 |
|
vz |
⊢ 𝑧 |
| 27 |
|
vg |
⊢ 𝑔 |
| 28 |
|
c2nd |
⊢ 2nd |
| 29 |
24
|
cv |
⊢ 𝑣 |
| 30 |
29 28
|
cfv |
⊢ ( 2nd ‘ 𝑣 ) |
| 31 |
26
|
cv |
⊢ 𝑧 |
| 32 |
30 31 17
|
co |
⊢ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) |
| 33 |
|
vf |
⊢ 𝑓 |
| 34 |
29 17
|
cfv |
⊢ ( Func ‘ 𝑣 ) |
| 35 |
27
|
cv |
⊢ 𝑔 |
| 36 |
|
ccofu |
⊢ ∘func |
| 37 |
33
|
cv |
⊢ 𝑓 |
| 38 |
35 37 36
|
co |
⊢ ( 𝑔 ∘func 𝑓 ) |
| 39 |
27 33 32 34 38
|
cmpo |
⊢ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) |
| 40 |
24 26 25 10 39
|
cmpo |
⊢ ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧 ∈ 𝑏 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) |
| 41 |
23 40
|
cop |
⊢ 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧 ∈ 𝑏 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) 〉 |
| 42 |
11 21 41
|
ctp |
⊢ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 Func 𝑦 ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧 ∈ 𝑏 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) 〉 } |
| 43 |
6 5 42
|
csb |
⊢ ⦋ ( 𝑢 ∩ Cat ) / 𝑏 ⦌ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 Func 𝑦 ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧 ∈ 𝑏 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) 〉 } |
| 44 |
1 2 43
|
cmpt |
⊢ ( 𝑢 ∈ V ↦ ⦋ ( 𝑢 ∩ Cat ) / 𝑏 ⦌ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 Func 𝑦 ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧 ∈ 𝑏 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) 〉 } ) |
| 45 |
0 44
|
wceq |
⊢ CatCat = ( 𝑢 ∈ V ↦ ⦋ ( 𝑢 ∩ Cat ) / 𝑏 ⦌ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 Func 𝑦 ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧 ∈ 𝑏 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) 〉 } ) |