Metamath Proof Explorer


Theorem elcatchom

Description: A morphism of the category of categories (in a universe) is a functor. See df-catc for the definition of the category Cat, which consists of all categories in the universe u (i.e., " u -small categories", see Definition 3.44. of Adamek p. 39), with functors as the morphisms ( catchom ). (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypotheses catcrcl.c 𝐶 = ( CatCat ‘ 𝑈 )
catcrcl.h 𝐻 = ( Hom ‘ 𝐶 )
catcrcl.f ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
Assertion elcatchom ( 𝜑𝐹 ∈ ( 𝑋 Func 𝑌 ) )

Proof

Step Hyp Ref Expression
1 catcrcl.c 𝐶 = ( CatCat ‘ 𝑈 )
2 catcrcl.h 𝐻 = ( Hom ‘ 𝐶 )
3 catcrcl.f ( 𝜑𝐹 ∈ ( 𝑋 𝐻 𝑌 ) )
4 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
5 1 2 3 catcrcl ( 𝜑𝑈 ∈ V )
6 1 2 3 4 catcrcl2 ( 𝜑 → ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) )
7 6 simpld ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
8 6 simprd ( 𝜑𝑌 ∈ ( Base ‘ 𝐶 ) )
9 1 4 5 2 7 8 catchom ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 Func 𝑌 ) )
10 3 9 eleqtrd ( 𝜑𝐹 ∈ ( 𝑋 Func 𝑌 ) )