| Step |
Hyp |
Ref |
Expression |
| 1 |
|
catcsect.c |
⊢ 𝐶 = ( CatCat ‘ 𝑈 ) |
| 2 |
|
catcsect.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 3 |
|
catcsect.i |
⊢ 𝐼 = ( idfunc ‘ 𝑋 ) |
| 4 |
|
catcsect.s |
⊢ 𝑆 = ( Sect ‘ 𝐶 ) |
| 5 |
|
id |
⊢ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 → 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) |
| 6 |
4 5
|
sectrcl |
⊢ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 → 𝐶 ∈ Cat ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 8 |
4 5 7
|
sectrcl2 |
⊢ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 → ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) |
| 9 |
6 8
|
jca |
⊢ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 → ( 𝐶 ∈ Cat ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) ) |
| 10 |
|
simpl |
⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 11 |
1 2 10
|
catcrcl |
⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) → 𝑈 ∈ V ) |
| 12 |
1
|
catccat |
⊢ ( 𝑈 ∈ V → 𝐶 ∈ Cat ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) → 𝐶 ∈ Cat ) |
| 14 |
1 2 10 7
|
catcrcl2 |
⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) → ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) |
| 15 |
13 14
|
jca |
⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) → ( 𝐶 ∈ Cat ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) ) |
| 16 |
15
|
3adant3 |
⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) → ( 𝐶 ∈ Cat ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) ) |
| 17 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
| 18 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
| 19 |
|
simpl |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ Cat ) |
| 20 |
|
simprl |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 21 |
|
simprr |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
| 22 |
7 2 17 18 4 19 20 21
|
issect |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) ) |
| 23 |
9 16 22
|
pm5.21nii |
⊢ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
| 24 |
|
df-3an |
⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
| 25 |
15 20
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 26 |
15 21
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
| 27 |
1 2 10
|
elcatchom |
⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) → 𝐹 ∈ ( 𝑋 Func 𝑌 ) ) |
| 28 |
|
simpr |
⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) → 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) |
| 29 |
1 2 28
|
elcatchom |
⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) → 𝐺 ∈ ( 𝑌 Func 𝑋 ) ) |
| 30 |
1 7 11 17 25 26 25 27 29
|
catcco |
⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 𝐺 ∘func 𝐹 ) ) |
| 31 |
1 7 18 3 11 25
|
catcid |
⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) = 𝐼 ) |
| 32 |
30 31
|
eqeq12d |
⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) → ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ↔ ( 𝐺 ∘func 𝐹 ) = 𝐼 ) ) |
| 33 |
32
|
pm5.32i |
⊢ ( ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐺 ∘func 𝐹 ) = 𝐼 ) ) |
| 34 |
23 24 33
|
3bitri |
⊢ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐺 ∘func 𝐹 ) = 𝐼 ) ) |