| Step |
Hyp |
Ref |
Expression |
| 1 |
|
catcinv.c |
⊢ 𝐶 = ( CatCat ‘ 𝑈 ) |
| 2 |
|
catcinv.n |
⊢ 𝑁 = ( Inv ‘ 𝐶 ) |
| 3 |
|
catcinv.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 4 |
|
catcinv.i |
⊢ 𝐼 = ( idfunc ‘ 𝑋 ) |
| 5 |
|
catcinv.j |
⊢ 𝐽 = ( idfunc ‘ 𝑌 ) |
| 6 |
|
eqid |
⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) |
| 7 |
1 3 4 6
|
catcsect |
⊢ ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ↔ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐺 ∘func 𝐹 ) = 𝐼 ) ) |
| 8 |
1 3 5 6
|
catcsect |
⊢ ( 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ↔ ( ( 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ∧ ( 𝐹 ∘func 𝐺 ) = 𝐽 ) ) |
| 9 |
|
ancom |
⊢ ( ( 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ) |
| 10 |
8 9
|
bianbi |
⊢ ( 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ↔ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐹 ∘func 𝐺 ) = 𝐽 ) ) |
| 11 |
7 10
|
anbi12i |
⊢ ( ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ↔ ( ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐺 ∘func 𝐹 ) = 𝐼 ) ∧ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐹 ∘func 𝐺 ) = 𝐽 ) ) ) |
| 12 |
2 6
|
isinv2 |
⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) |
| 13 |
|
anandi |
⊢ ( ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝐺 ∘func 𝐹 ) = 𝐼 ∧ ( 𝐹 ∘func 𝐺 ) = 𝐽 ) ) ↔ ( ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐺 ∘func 𝐹 ) = 𝐼 ) ∧ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐹 ∘func 𝐺 ) = 𝐽 ) ) ) |
| 14 |
11 12 13
|
3bitr4i |
⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( ( 𝐺 ∘func 𝐹 ) = 𝐼 ∧ ( 𝐹 ∘func 𝐺 ) = 𝐽 ) ) ) |