| Step |
Hyp |
Ref |
Expression |
| 1 |
|
catcisoi.c |
⊢ 𝐶 = ( CatCat ‘ 𝑈 ) |
| 2 |
|
catcisoi.r |
⊢ 𝑅 = ( Base ‘ 𝑋 ) |
| 3 |
|
catcisoi.s |
⊢ 𝑆 = ( Base ‘ 𝑌 ) |
| 4 |
|
catcisoi.i |
⊢ 𝐼 = ( Iso ‘ 𝐶 ) |
| 5 |
|
catcisoi.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 7 |
4 5 6
|
isorcl2 |
⊢ ( 𝜑 → ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) |
| 8 |
7
|
simpld |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 9 |
1 6
|
elbasfv |
⊢ ( 𝑋 ∈ ( Base ‘ 𝐶 ) → 𝑈 ∈ V ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ V ) |
| 11 |
7
|
simprd |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
| 12 |
1 6 2 3 10 8 11 4
|
catciso |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ ( 𝐹 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st ‘ 𝐹 ) : 𝑅 –1-1-onto→ 𝑆 ) ) ) |
| 13 |
5 12
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st ‘ 𝐹 ) : 𝑅 –1-1-onto→ 𝑆 ) ) |