| Step |
Hyp |
Ref |
Expression |
| 1 |
|
catcisoi.c |
|- C = ( CatCat ` U ) |
| 2 |
|
catcisoi.r |
|- R = ( Base ` X ) |
| 3 |
|
catcisoi.s |
|- S = ( Base ` Y ) |
| 4 |
|
catcisoi.i |
|- I = ( Iso ` C ) |
| 5 |
|
catcisoi.f |
|- ( ph -> F e. ( X I Y ) ) |
| 6 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 7 |
4 5 6
|
isorcl2 |
|- ( ph -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) |
| 8 |
7
|
simpld |
|- ( ph -> X e. ( Base ` C ) ) |
| 9 |
1 6
|
elbasfv |
|- ( X e. ( Base ` C ) -> U e. _V ) |
| 10 |
8 9
|
syl |
|- ( ph -> U e. _V ) |
| 11 |
7
|
simprd |
|- ( ph -> Y e. ( Base ` C ) ) |
| 12 |
1 6 2 3 10 8 11 4
|
catciso |
|- ( ph -> ( F e. ( X I Y ) <-> ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) ) |
| 13 |
5 12
|
mpbid |
|- ( ph -> ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) |