Metamath Proof Explorer


Theorem catcisoi

Description: A functor is an isomorphism of categories only if it is full and faithful, and is a bijection on the objects. Remark 3.28(2) in Adamek p. 34. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Hypotheses catcisoi.c
|- C = ( CatCat ` U )
catcisoi.r
|- R = ( Base ` X )
catcisoi.s
|- S = ( Base ` Y )
catcisoi.i
|- I = ( Iso ` C )
catcisoi.f
|- ( ph -> F e. ( X I Y ) )
Assertion catcisoi
|- ( ph -> ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) )

Proof

Step Hyp Ref Expression
1 catcisoi.c
 |-  C = ( CatCat ` U )
2 catcisoi.r
 |-  R = ( Base ` X )
3 catcisoi.s
 |-  S = ( Base ` Y )
4 catcisoi.i
 |-  I = ( Iso ` C )
5 catcisoi.f
 |-  ( ph -> F e. ( X I Y ) )
6 eqid
 |-  ( Base ` C ) = ( Base ` C )
7 4 5 6 isorcl2
 |-  ( ph -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) )
8 7 simpld
 |-  ( ph -> X e. ( Base ` C ) )
9 1 6 elbasfv
 |-  ( X e. ( Base ` C ) -> U e. _V )
10 8 9 syl
 |-  ( ph -> U e. _V )
11 7 simprd
 |-  ( ph -> Y e. ( Base ` C ) )
12 1 6 2 3 10 8 11 4 catciso
 |-  ( ph -> ( F e. ( X I Y ) <-> ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) )
13 5 12 mpbid
 |-  ( ph -> ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) )