| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uobeq2.b |
|- B = ( Base ` D ) |
| 2 |
|
uobeq2.x |
|- ( ph -> X e. B ) |
| 3 |
|
uobeq2.f |
|- ( ph -> F e. ( C Func D ) ) |
| 4 |
|
uobeq2.g |
|- ( ph -> ( K o.func F ) = G ) |
| 5 |
|
uobeq2.y |
|- ( ph -> ( ( 1st ` K ) ` X ) = Y ) |
| 6 |
|
uobeq2.q |
|- Q = ( CatCat ` U ) |
| 7 |
|
uobeq2.s |
|- S = ( Sect ` Q ) |
| 8 |
|
uobeq2.k |
|- ( ph -> K e. ( D Full E ) ) |
| 9 |
|
uobeq2.1 |
|- ( ph -> K e. dom ( D S E ) ) |
| 10 |
|
eldmg |
|- ( K e. dom ( D S E ) -> ( K e. dom ( D S E ) <-> E. l K ( D S E ) l ) ) |
| 11 |
10
|
ibi |
|- ( K e. dom ( D S E ) -> E. l K ( D S E ) l ) |
| 12 |
9 11
|
syl |
|- ( ph -> E. l K ( D S E ) l ) |
| 13 |
|
eqid |
|- ( idFunc ` D ) = ( idFunc ` D ) |
| 14 |
2
|
adantr |
|- ( ( ph /\ K ( D S E ) l ) -> X e. B ) |
| 15 |
3
|
adantr |
|- ( ( ph /\ K ( D S E ) l ) -> F e. ( C Func D ) ) |
| 16 |
8
|
adantr |
|- ( ( ph /\ K ( D S E ) l ) -> K e. ( D Full E ) ) |
| 17 |
4
|
adantr |
|- ( ( ph /\ K ( D S E ) l ) -> ( K o.func F ) = G ) |
| 18 |
5
|
adantr |
|- ( ( ph /\ K ( D S E ) l ) -> ( ( 1st ` K ) ` X ) = Y ) |
| 19 |
|
eqid |
|- ( Hom ` Q ) = ( Hom ` Q ) |
| 20 |
6 19 13 7
|
catcsect |
|- ( K ( D S E ) l <-> ( ( K e. ( D ( Hom ` Q ) E ) /\ l e. ( E ( Hom ` Q ) D ) ) /\ ( l o.func K ) = ( idFunc ` D ) ) ) |
| 21 |
20
|
simprbi |
|- ( K ( D S E ) l -> ( l o.func K ) = ( idFunc ` D ) ) |
| 22 |
21
|
adantl |
|- ( ( ph /\ K ( D S E ) l ) -> ( l o.func K ) = ( idFunc ` D ) ) |
| 23 |
20
|
simplbi |
|- ( K ( D S E ) l -> ( K e. ( D ( Hom ` Q ) E ) /\ l e. ( E ( Hom ` Q ) D ) ) ) |
| 24 |
23
|
simprd |
|- ( K ( D S E ) l -> l e. ( E ( Hom ` Q ) D ) ) |
| 25 |
6 19 24
|
elcatchom |
|- ( K ( D S E ) l -> l e. ( E Func D ) ) |
| 26 |
25
|
adantl |
|- ( ( ph /\ K ( D S E ) l ) -> l e. ( E Func D ) ) |
| 27 |
1 13 14 15 16 17 18 22 26
|
uobeq |
|- ( ( ph /\ K ( D S E ) l ) -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) |
| 28 |
12 27
|
exlimddv |
|- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) |