| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uobffth.b |
|- B = ( Base ` D ) |
| 2 |
|
uobffth.x |
|- ( ph -> X e. B ) |
| 3 |
|
uobffth.f |
|- ( ph -> F e. ( C Func D ) ) |
| 4 |
|
uobffth.g |
|- ( ph -> ( K o.func F ) = G ) |
| 5 |
|
uobffth.y |
|- ( ph -> ( ( 1st ` K ) ` X ) = Y ) |
| 6 |
|
uobeq.i |
|- I = ( idFunc ` D ) |
| 7 |
|
uobeq.k |
|- ( ph -> K e. ( D Full E ) ) |
| 8 |
|
uobeq.n |
|- ( ph -> ( L o.func K ) = I ) |
| 9 |
|
uobeq.l |
|- ( ph -> L e. ( E Func D ) ) |
| 10 |
|
relfunc |
|- Rel ( D Func E ) |
| 11 |
|
fullfunc |
|- ( D Full E ) C_ ( D Func E ) |
| 12 |
11 7
|
sselid |
|- ( ph -> K e. ( D Func E ) ) |
| 13 |
|
1st2nd |
|- ( ( Rel ( D Func E ) /\ K e. ( D Func E ) ) -> K = <. ( 1st ` K ) , ( 2nd ` K ) >. ) |
| 14 |
10 12 13
|
sylancr |
|- ( ph -> K = <. ( 1st ` K ) , ( 2nd ` K ) >. ) |
| 15 |
12
|
func1st2nd |
|- ( ph -> ( 1st ` K ) ( D Func E ) ( 2nd ` K ) ) |
| 16 |
9
|
func1st2nd |
|- ( ph -> ( 1st ` L ) ( E Func D ) ( 2nd ` L ) ) |
| 17 |
12 9
|
cofu1st2nd |
|- ( ph -> ( L o.func K ) = ( <. ( 1st ` L ) , ( 2nd ` L ) >. o.func <. ( 1st ` K ) , ( 2nd ` K ) >. ) ) |
| 18 |
17 8
|
eqtr3d |
|- ( ph -> ( <. ( 1st ` L ) , ( 2nd ` L ) >. o.func <. ( 1st ` K ) , ( 2nd ` K ) >. ) = I ) |
| 19 |
6 15 16 18
|
cofidfth |
|- ( ph -> ( 1st ` K ) ( D Faith E ) ( 2nd ` K ) ) |
| 20 |
|
df-br |
|- ( ( 1st ` K ) ( D Faith E ) ( 2nd ` K ) <-> <. ( 1st ` K ) , ( 2nd ` K ) >. e. ( D Faith E ) ) |
| 21 |
19 20
|
sylib |
|- ( ph -> <. ( 1st ` K ) , ( 2nd ` K ) >. e. ( D Faith E ) ) |
| 22 |
14 21
|
eqeltrd |
|- ( ph -> K e. ( D Faith E ) ) |
| 23 |
7 22
|
elind |
|- ( ph -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 24 |
1 2 3 4 5 23
|
uobffth |
|- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) |