| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uobeq.b |
|- B = ( Base ` D ) |
| 2 |
|
uobeq.i |
|- I = ( idFunc ` D ) |
| 3 |
|
uobeq.x |
|- ( ph -> X e. B ) |
| 4 |
|
uobeq.f |
|- ( ph -> F e. ( C Func D ) ) |
| 5 |
|
uobeq.k |
|- ( ph -> K e. ( D Full E ) ) |
| 6 |
|
uobeq.g |
|- ( ph -> ( K o.func F ) = G ) |
| 7 |
|
uobeq.y |
|- ( ph -> ( ( 1st ` K ) ` X ) = Y ) |
| 8 |
|
uobeq.n |
|- ( ph -> ( L o.func K ) = I ) |
| 9 |
|
uobeq.l |
|- ( ph -> L e. ( E Func D ) ) |
| 10 |
|
19.42v |
|- ( E. m ( ph /\ z ( F ( C UP D ) X ) m ) <-> ( ph /\ E. m z ( F ( C UP D ) X ) m ) ) |
| 11 |
|
fvexd |
|- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) e. _V ) |
| 12 |
7
|
adantr |
|- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( ( 1st ` K ) ` X ) = Y ) |
| 13 |
|
relfunc |
|- Rel ( D Func E ) |
| 14 |
|
fullfunc |
|- ( D Full E ) C_ ( D Func E ) |
| 15 |
14 5
|
sselid |
|- ( ph -> K e. ( D Func E ) ) |
| 16 |
|
1st2nd |
|- ( ( Rel ( D Func E ) /\ K e. ( D Func E ) ) -> K = <. ( 1st ` K ) , ( 2nd ` K ) >. ) |
| 17 |
13 15 16
|
sylancr |
|- ( ph -> K = <. ( 1st ` K ) , ( 2nd ` K ) >. ) |
| 18 |
15
|
func1st2nd |
|- ( ph -> ( 1st ` K ) ( D Func E ) ( 2nd ` K ) ) |
| 19 |
9
|
func1st2nd |
|- ( ph -> ( 1st ` L ) ( E Func D ) ( 2nd ` L ) ) |
| 20 |
15 9
|
cofu1st2nd |
|- ( ph -> ( L o.func K ) = ( <. ( 1st ` L ) , ( 2nd ` L ) >. o.func <. ( 1st ` K ) , ( 2nd ` K ) >. ) ) |
| 21 |
20 8
|
eqtr3d |
|- ( ph -> ( <. ( 1st ` L ) , ( 2nd ` L ) >. o.func <. ( 1st ` K ) , ( 2nd ` K ) >. ) = I ) |
| 22 |
2 18 19 21
|
cofidfth |
|- ( ph -> ( 1st ` K ) ( D Faith E ) ( 2nd ` K ) ) |
| 23 |
|
df-br |
|- ( ( 1st ` K ) ( D Faith E ) ( 2nd ` K ) <-> <. ( 1st ` K ) , ( 2nd ` K ) >. e. ( D Faith E ) ) |
| 24 |
22 23
|
sylib |
|- ( ph -> <. ( 1st ` K ) , ( 2nd ` K ) >. e. ( D Faith E ) ) |
| 25 |
17 24
|
eqeltrd |
|- ( ph -> K e. ( D Faith E ) ) |
| 26 |
5 25
|
elind |
|- ( ph -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 28 |
6
|
adantr |
|- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( K o.func F ) = G ) |
| 29 |
|
eqidd |
|- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) = ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) ) |
| 30 |
|
simpr |
|- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> z ( F ( C UP D ) X ) m ) |
| 31 |
12 27 28 29 30
|
uptrai |
|- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> z ( G ( C UP E ) Y ) ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) ) |
| 32 |
|
breq2 |
|- ( n = ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) -> ( z ( G ( C UP E ) Y ) n <-> z ( G ( C UP E ) Y ) ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) ) ) |
| 33 |
11 31 32
|
spcedv |
|- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> E. n z ( G ( C UP E ) Y ) n ) |
| 34 |
33
|
exlimiv |
|- ( E. m ( ph /\ z ( F ( C UP D ) X ) m ) -> E. n z ( G ( C UP E ) Y ) n ) |
| 35 |
10 34
|
sylbir |
|- ( ( ph /\ E. m z ( F ( C UP D ) X ) m ) -> E. n z ( G ( C UP E ) Y ) n ) |
| 36 |
|
19.42v |
|- ( E. n ( ph /\ z ( G ( C UP E ) Y ) n ) <-> ( ph /\ E. n z ( G ( C UP E ) Y ) n ) ) |
| 37 |
|
fvexd |
|- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) e. _V ) |
| 38 |
7
|
adantr |
|- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( ( 1st ` K ) ` X ) = Y ) |
| 39 |
26
|
adantr |
|- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 40 |
6
|
adantr |
|- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( K o.func F ) = G ) |
| 41 |
3
|
adantr |
|- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> X e. B ) |
| 42 |
4
|
adantr |
|- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> F e. ( C Func D ) ) |
| 43 |
|
eqidd |
|- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) = ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) ) |
| 44 |
|
simpr |
|- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> z ( G ( C UP E ) Y ) n ) |
| 45 |
38 39 40 1 41 42 43 44
|
uptrar |
|- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> z ( F ( C UP D ) X ) ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) ) |
| 46 |
|
breq2 |
|- ( m = ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) -> ( z ( F ( C UP D ) X ) m <-> z ( F ( C UP D ) X ) ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) ) ) |
| 47 |
37 45 46
|
spcedv |
|- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> E. m z ( F ( C UP D ) X ) m ) |
| 48 |
47
|
exlimiv |
|- ( E. n ( ph /\ z ( G ( C UP E ) Y ) n ) -> E. m z ( F ( C UP D ) X ) m ) |
| 49 |
36 48
|
sylbir |
|- ( ( ph /\ E. n z ( G ( C UP E ) Y ) n ) -> E. m z ( F ( C UP D ) X ) m ) |
| 50 |
35 49
|
impbida |
|- ( ph -> ( E. m z ( F ( C UP D ) X ) m <-> E. n z ( G ( C UP E ) Y ) n ) ) |
| 51 |
|
relup |
|- Rel ( F ( C UP D ) X ) |
| 52 |
|
releldmb |
|- ( Rel ( F ( C UP D ) X ) -> ( z e. dom ( F ( C UP D ) X ) <-> E. m z ( F ( C UP D ) X ) m ) ) |
| 53 |
51 52
|
ax-mp |
|- ( z e. dom ( F ( C UP D ) X ) <-> E. m z ( F ( C UP D ) X ) m ) |
| 54 |
|
relup |
|- Rel ( G ( C UP E ) Y ) |
| 55 |
|
releldmb |
|- ( Rel ( G ( C UP E ) Y ) -> ( z e. dom ( G ( C UP E ) Y ) <-> E. n z ( G ( C UP E ) Y ) n ) ) |
| 56 |
54 55
|
ax-mp |
|- ( z e. dom ( G ( C UP E ) Y ) <-> E. n z ( G ( C UP E ) Y ) n ) |
| 57 |
50 53 56
|
3bitr4g |
|- ( ph -> ( z e. dom ( F ( C UP D ) X ) <-> z e. dom ( G ( C UP E ) Y ) ) ) |
| 58 |
57
|
eqrdv |
|- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) |