Metamath Proof Explorer


Theorem uobeq

Description: If a full functor (in fact, a full embedding) is a section of a functor (surjective on objects), then the sets of universal objects are equal. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Hypotheses uobffth.b
|- B = ( Base ` D )
uobffth.x
|- ( ph -> X e. B )
uobffth.f
|- ( ph -> F e. ( C Func D ) )
uobffth.g
|- ( ph -> ( K o.func F ) = G )
uobffth.y
|- ( ph -> ( ( 1st ` K ) ` X ) = Y )
uobeq.i
|- I = ( idFunc ` D )
uobeq.k
|- ( ph -> K e. ( D Full E ) )
uobeq.n
|- ( ph -> ( L o.func K ) = I )
uobeq.l
|- ( ph -> L e. ( E Func D ) )
Assertion uobeq
|- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) )

Proof

Step Hyp Ref Expression
1 uobffth.b
 |-  B = ( Base ` D )
2 uobffth.x
 |-  ( ph -> X e. B )
3 uobffth.f
 |-  ( ph -> F e. ( C Func D ) )
4 uobffth.g
 |-  ( ph -> ( K o.func F ) = G )
5 uobffth.y
 |-  ( ph -> ( ( 1st ` K ) ` X ) = Y )
6 uobeq.i
 |-  I = ( idFunc ` D )
7 uobeq.k
 |-  ( ph -> K e. ( D Full E ) )
8 uobeq.n
 |-  ( ph -> ( L o.func K ) = I )
9 uobeq.l
 |-  ( ph -> L e. ( E Func D ) )
10 relfunc
 |-  Rel ( D Func E )
11 fullfunc
 |-  ( D Full E ) C_ ( D Func E )
12 11 7 sselid
 |-  ( ph -> K e. ( D Func E ) )
13 1st2nd
 |-  ( ( Rel ( D Func E ) /\ K e. ( D Func E ) ) -> K = <. ( 1st ` K ) , ( 2nd ` K ) >. )
14 10 12 13 sylancr
 |-  ( ph -> K = <. ( 1st ` K ) , ( 2nd ` K ) >. )
15 12 func1st2nd
 |-  ( ph -> ( 1st ` K ) ( D Func E ) ( 2nd ` K ) )
16 9 func1st2nd
 |-  ( ph -> ( 1st ` L ) ( E Func D ) ( 2nd ` L ) )
17 12 9 cofu1st2nd
 |-  ( ph -> ( L o.func K ) = ( <. ( 1st ` L ) , ( 2nd ` L ) >. o.func <. ( 1st ` K ) , ( 2nd ` K ) >. ) )
18 17 8 eqtr3d
 |-  ( ph -> ( <. ( 1st ` L ) , ( 2nd ` L ) >. o.func <. ( 1st ` K ) , ( 2nd ` K ) >. ) = I )
19 6 15 16 18 cofidfth
 |-  ( ph -> ( 1st ` K ) ( D Faith E ) ( 2nd ` K ) )
20 df-br
 |-  ( ( 1st ` K ) ( D Faith E ) ( 2nd ` K ) <-> <. ( 1st ` K ) , ( 2nd ` K ) >. e. ( D Faith E ) )
21 19 20 sylib
 |-  ( ph -> <. ( 1st ` K ) , ( 2nd ` K ) >. e. ( D Faith E ) )
22 14 21 eqeltrd
 |-  ( ph -> K e. ( D Faith E ) )
23 7 22 elind
 |-  ( ph -> K e. ( ( D Full E ) i^i ( D Faith E ) ) )
24 1 2 3 4 5 23 uobffth
 |-  ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) )